1 |
KOVALCIK A, SMILEK J, MACHOVSKY M, et al. Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling[J]. Int J Biol Macromol, 2021, 183: 880-889.
|
2 |
CHEN Y W, HANAK B W, YANG T C, et al. Computer-assisted surgery in medical and dental applications[J]. Expert Rev Med Devices, 2021,18(7): 669-696.
|
3 |
XIA D D, YANG F, ZHENG Y F, et al. Research status of biodegradable metals designed for oral and maxillofacial applications: a review[J]. Bioact Mater, 2021, 6(11): 4186-4208.
|
4 |
MEMON A R, WANG E P, HU J L, et al. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants[J]. Expert Rev Med Devices, 2020, 17(4): 345-356.
|
5 |
HA S H, LEE H, CHOI J Y. Correction of midface deficiency in patient with crouzon syndrome by orthognathic surgery and patient specific facial implant: case report[J]. J Craniofac Surg, 2022, 33(2): e191-e194.
|
6 |
SU X, WANG T, GUO S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field[J]. Regen Ther, 2021, 16: 63-72.
|
7 |
MANIA S, BANACH A, TYLINGO R. Review of current research on chitosan as a raw material in three-dimensional printing technology in biomedical applications[J]. Prog Chem Appl Chitin Deriv, 2020, 25: 37-50.
|
8 |
MEI K, GEAGAN M, ROSHKOVAN L, et al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures[J]. Med Phys, 2022, 49(2): 825-835.
|
9 |
LEONOV D, KODENKO M, LEICHENCO D, et al. Design and validation of a phantom for transcranial ultrasonography[J]. Int J Comput Assist Radiol Surg, 2022, 17(9): 1579-1588.
|
10 |
LEISNER L C, TASAKA A, TREBING C T, et al. Measuring peri-implant bone lesions using low-dose cone-beam computed tomography[J]. J Prosthodont Res, 2022, 66(2): 326-332.
|
11 |
MORBÉE L, CHEN M, VAN DEN BERGHE T,et al. MRI-based synthetic CT of the hip: can it be an alternative to conventional CT in the evaluation of osseous morphology? [J]. Eur Radiol, 2022, 32(5): 3112-3120.
|
12 |
UNKOVSKIY A, SPINTZYK S, AXMANN D, et al. Additive manufacturing: a comparative analysis of dimensional accuracy and skin texture reproduction of auricular prostheses replicas[J]. J Prosthodont, 2019, 28(2): e460-e468.
|
13 |
KAMIO T, SUZUKI M, ASAUMI R, et al. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy[J]. 3D Print Med, 2020, 6(1): 17.
|
14 |
VYAVAHARE S, KUMAR S, PANGHAL D. Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling[J]. Rapid Prototyp J, 2020, 26(9): 1535-1554.
|
15 |
EUM J, KIM Y, UM D J, et al. Solvent-free polycaprolactone dissolving microneedles generated via the thermal melting method for the sustained release of capsaicin[J]. Micromachines (Basel),2021,12(2): 167.
|
16 |
SHUJAAT S, SHAHEEN E, NOVILLO F, et al. Accuracy of cone beam computed tomography-derived casts: a comparative study[J]. J Prosthet Dent, 2021, 125(1): 95-102.
|
17 |
MSALLEM B, SHARMA N, CAO S S, et al. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology[J]. J Clin Med, 2020, 9(3): 817.
|
18 |
GAO S S, LIU R J, XIN H, et al. The surface characteristics, microstructure and mechanical properties of PEEK printed by fused deposition modeling with different raster angles[J].Polymers (Basel),2021,14(1): 77.
|
19 |
WANG Z L, NOGUEIRA L P, HAUGEN H J, et al. Dual-functional porous and cisplatin-loaded polymethylmethacrylate cement for reconstruction of load-bearing bone defect kills bone tumor cells[J]. Bioact Mater, 2022, 15: 120-130.
|
20 |
METLERSKI M, GROCHOLEWICZ K, JAROŃ A, et al. Comparison of presurgical dental models manufactured with two different three-dimensional printing techniques[J]. J Healthc Eng, 2020, 2020: 8893338.
|
21 |
JAIN S, FUOCO T, YASSIN M A, et al. Printability and critical insight into polymer properties during direct-extrusion based 3D printing of medical grade polylactide and copolyesters[J]. Biomacromolecules, 2020, 21(2): 388-396.
|
22 |
JAIDEV L R, CHATTERJEE K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response[J]. Mater Des, 2019, 161: 44-54.
|
23 |
YE X L, LI L H, LIN Z F, et al. Integrating 3D-printed PHBV/Calcium sulfate hemihydrate scaffold and chitosan hydrogel for enhanced osteogenic property[J]. Carbohydr Polym, 2018, 202: 106-114.
|
24 |
WANG Q Q, JI C C, SUN L S, et al. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing[J]. Molecules, 2020, 25(10): 2319.
|
25 |
SONG Y, WU H, GAO Y, et al. Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes[J]. ACS Appl Mater Interfaces, 2020, 12(14): 16058-16075.
|
26 |
GAO X S, WANG H H, ZHANG X, et al. Preparation of amorphous poly(aryl ether nitrile ketone) and its composites with nano hydroxyapatite for 3D artificial bone printing[J]. ACS Appl Bio Mater, 2020, 3(11): 7930-7940.
|
27 |
FAIRAG R, LI L, RAMIREZ-GARCIALUNA J L, et al. A composite lactide-mineral 3D-printed scaffold for bone repair and regeneration[J]. Front Cell Dev Biol, 2021, 9: 654518.
|
28 |
ULBRICH L M, BALBINOT G S, BROTTO G L,et al. 3D printing of poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair[J]. J Tissue Eng Regen Med, 2022, 16(3): 267-278.
|
29 |
ZHAO S, XIE K, GUO Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair[J]. ACS Biomater Sci Eng, 2020, 6(9): 5120-5131.
|
30 |
CHEN W T, NICHOLS L, BRINKLEY F, et al. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111686.
|
31 |
ZHANG Z Z, ZHANG H Z, ZHANG Z Y. 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects[J]. Exp Ther Med, 2019, 17(1): 79-90.
|
32 |
POUHAËR M, PICART G, BAYA D, et al. Design of 3D-printed macro-models for undergraduates’ preclinical practice of endodontic access cavities[J]. Eur J Dent Educ, 2022, 26(2): 347-353.
|
33 |
GIACOMINI G O, DOTTO G N, MELLO W M,et al. Three-dimensional printed model for preclinical training in oral radiology[J]. Eur J Dent Educ, 2022.DOI:10.1111/eje.12801 .
doi: 10.1111/eje.12801
|
34 |
BHADRA D, SHAH N C, ARORA A, et al. Deducing a surgical dilemma using a novel three dimensional printing technique[J]. J Conserv Dent, 2018, 21(5): 582-585.
|
35 |
JABER S T, HAJEER M Y, KHATTAB T Z, et al. Evaluation of the fused deposition modeling and the digital light processing techniques in terms of dimensional accuracy of printing dental models used for the fabrication of clear aligners[J]. Clin Exp Dent Res, 2021, 7(4): 591-600.
|
36 |
MOHD TAHIR N, WAN HASSAN W N, SAUB R. Comparing retainers constructed on conventional stone models and on 3D printed models: a randomized crossover clinical study[J]. Eur J Orthod, 2019, 41(4): 370-380.
|
37 |
WANG X, SU J S. Evaluation of precision of custom edentulous trays fabricated with 3D printing technologies[J].Int J Prosthodont,2021,34(1): 109-117.
|
38 |
SHILO D, CAPUCHA T, GOLDSTEIN D, et al. Treatment of facial deformities using 3D planning and printing of patient-specific implants[J]. J Vis Exp, 2020,159.DOI:10.3791/60930 .
doi: 10.3791/60930
|
39 |
ROY CHOWDHURY S K, SHADAMARSHAN RENGASAYEE A, KRISHNAPRABHU R. The application of pre-operative three-dimensional models in the management of mandibular pathology: is it really useful? an institutional study[J]. J Maxillofac Oral Surg, 2021, 20(1): 121-131.
|
40 |
ATEF M, MOUNIR M. Computer-guided inferior alveolar nerve lateralization with simultaneous implant placement: a preliminary report[J]. J Oral Implantol, 2018, 44(3): 192-197.
|
41 |
SUN Y, DING Q, TANG L, et al. Accuracy of a chairside fused deposition modeling 3D-printed single-tooth surgical template for implant placement: an in vitro comparison with a light cured template[J]. J Craniomaxillofac Surg, 2019, 47(8): 1216-1221.
|
42 |
PIERALLI S, SPIES B C, HROMADNIK V, et al. How accurate is oral implant installation using surgical guides printed from a degradable and steam-sterilized biopolymer? [J]. J Clin Med, 2020, 9(8): 2322.
|
43 |
ROUZÉ L'ALZIT F, CADE R, NAVEAU A, et al. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology[J]. J Dent, 2022, 117: 103909.
|
44 |
YOUSEFI F, SHOKRI A, FARHADIAN M, et al. Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography[J]. Imaging Sci Dent, 2021, 51(1): 41-47.
|
45 |
DING L, CHEN X, ZHANG J, et al. Digital fabrication of a maxillary obturator prosthesis by using a 3-dimensionally-printed polyetheretherketone framework[J]. J Prosthet Dent,2023,129(1):230-233.
|
46 |
CHEN X, WANG F, SUN F F, et al. Digital fabrication of an adult speech aid prosthesis by using a 3-dimensionally printed polyetheretherketone framework[J]. J Prosthet Dent, 2022,127(2): 358-361.
|
47 |
WANG C, HUANG W, ZHOU Y, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioact Mater, 2020, 5(1): 82-91.
|
48 |
PARK S A, LEE S J, SEOK J M, et al. Fabrication of 3D printed PCL/PEG polyblend scaffold using rapid prototyping system for bone tissue engineering application[J]. J Bionic Eng, 2018, 15(3): 435-442.
|
49 |
LEE C H, HAJIBANDEH J, SUZUKI T, et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex[J]. Tissue Eng Part A, 2014, 20(7/8): 1342-1351.
|
50 |
CUI M S, PAN H, LI L, et al. Exploration and preparation of patient-specific ciprofloxacin implants drug delivery system via 3D printing technologies[J]. J Pharm Sci, 2021, 110(11): 3678-3689.
|