1 |
FESENKO E E, KOLESNIKOV S S, LYUBARSKY A L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment[J]. Nature, 1985, 313(6000): 310-313.
|
2 |
NAKAMURA T, GOLD G H. A cyclic nucleotide-gated conductance in olfactory receptor cilia[J]. Nature, 1987, 325(6103): 442-444.
|
3 |
BURNS M E, ARSHAVSKY V Y. Beyond counting photons: trials and trends in vertebrate visual transduction[J]. Neuron, 2005, 48(3): 387-401.
|
4 |
HSU Y T, MOLDAY R S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin[J]. Nature, 1993, 361(6407): 76-79.
|
5 |
SAVCHENKO A, BARNES S, KRAMER R H. Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide[J]. Nature, 1997, 390(6661): 694-698.
|
6 |
FRINGS S. Chemoelectrical signal transduction in olfactory sensory neurons of air-breathing vertebrates[J]. Cell Mol Life Sci, 2001, 58(4): 510-519.
|
7 |
TOGASHI K, VON SCHIMMELMANN M J, NISHIYAMA M, et al. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion[J]. Neuron, 2008, 58(5): 694-707.
|
8 |
HEINE S, MICHALAKIS S, KALLENBORN-GERHARDT W, et al. CNGA3: a target of spinal nitric oxide/cGMP signaling and modulator of inflammatory pain hypersensitivity[J]. J Neurosci, 2011, 31(31): 11184-11192.
|
9 |
KALLENBORN-GERHARDT W, METZNER K, LU R R, et al. Neuropathic and cAMP-induced pain behavior is ameliorated in mice lacking CNGB1[J]. Neuropharmacology, 2020, 171: 108087.
|
10 |
MICHALAKIS S, KLEPPISCH T, POLTA S A,et al. Altered synaptic plasticity and behavioral abnormalities in CNGA3-deficient mice[J]. Genes Brain Behav, 2011, 10(2): 137-148.
|
11 |
BRADLEY J, REUTER D, FRINGS S. Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits[J]. Science, 2001, 294(5549): 2176-2178.
|
12 |
KAUPP U B, NIIDOME T, TANABE T, et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel[J]. Nature, 1989, 342(6251): 762-766.
|
13 |
GERSTNER A, ZONG X, HOFMANN F, et al. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina[J]. J Neurosci, 2000, 20(4):1324-1332.
|
14 |
COBURN C M, BARGMANN C I. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans[J]. Neuron, 1996, 17(4): 695-706.
|
15 |
BAUMANN A, FRINGS S, GODDE M, et al. Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae[J]. EMBO J, 1994, 13(21): 5040-5050.
|
16 |
MIYAZU M, TANIMURA T, SOKABE M. Molecular cloning and characterization of a putative cyclic nucleotide-gated channel from Drosophila melanogaster[J]. Insect Mol Biol, 2000,9(3): 283-292.
|
17 |
ZHONG H N, MOLDAY L L, MOLDAY R S, et al. The heteromeric cyclic nucleotide-gated channel adopts a 3A: 1B stoichiometry[J]. Nature, 2002, 420(6912): 193-198.
|
18 |
PENG C H, RICH E D, VARNUM M D. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels[J]. Neuron, 2004, 42(3): 401-410.
|
19 |
ZHENG J, ZAGOTTA W N. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels[J]. Neuron, 2004, 42(3): 411-421.
|
20 |
RITTER L M, KHATTREE N, TAM B, et al. In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding[J]. J Neurosci, 2011, 31(31): 11231-11243.
|
21 |
SU Y, DOSTMANN W R, HERBERG F W, et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains[J]. Science, 1995, 269(5225): 807-813.
|
22 |
VARNUM M D, BLACK K D, ZAGOTTA W N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels[J]. Neuron, 1995, 15(3): 619-625.
|
23 |
ALTENHOFEN W, LUDWIG J, EISMANN E,et al. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium[J].Proc Natl Acad Sci U S A,1991,88(21): 9868-9872.
|
24 |
GORDON S E, DOWNING-PARK J, ZIMMERMAN A L.Modulation of the cGMP-gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor[J]. J Physiol, 1995, 486(Pt 3): 533-546.
|
25 |
GORDON S E, DOWNING-PARK J, TAM B, et al. Diacylglycerol analogs inhibit the rod cGMP-gated channel by a phosphorylation-independent mechanism[J]. Biophys J, 1995, 69(2): 409-417.
|
26 |
EVANS E G B, MORGAN J L W, DIMAIO F, et al. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy[J]. Proc Natl Acad Sci U S A,2020,117(20):10839-10847.
|
27 |
LIU M, CHEN T Y, AHAMED B, et al. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel[J]. Science, 1994, 266(5189): 1348-1354.
|
28 |
VARNUM M D, ZAGOTTA W N. Interdomain interactions underlying activation of cyclic nucleotide-gated channels[J]. Science, 1997, 278(5335): 110-113.
|
29 |
TRUDEAU M C, ZAGOTTA W N. Mechanism of calcium/calmodulin inhibition of rod cyclic nucleotide-gated channels[J]. Proc Natl Acad Sci U S A, 2002,99(12): 8424-8429.
|
30 |
MALLOUK N, ILDEFONSE M, PAGÈS F, et al. Basis for intracellular retention of a human mutant of the retinal rod channel alpha subunit[J]. J Membr Biol, 2002, 185(2): 129-136.
|
31 |
FLYNN G E, BLACK K D, ISLAS L D, et al. Structure and rearrangements in the carboxy-terminal region of SpIH channels[J].Structure,2007,15(6):671-682.
|
32 |
FLYNN G E, ZAGOTTA W N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels[J]. Neuron, 2001, 30(3): 689-698.
|
33 |
TIBBS G R, GOULDING E H, SIEGELBAUM S A. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels[J]. Nature,1997,386(6625): 612-615.
|
34 |
CRAVEN K B, ZAGOTTA W N. CNG and HCN channels: two peas, one pod[J]. Annu Rev Physiol, 2006, 68: 375-401.
|
35 |
XUE J, HAN Y, ZENG W Z, et al. Structural mechanisms of gating and selectivity of human rod CNGA1 channel[J].Neuron,2021,109(8):1302-1313.
|
36 |
SONG Y J, CYGNAR K D, SAGDULLAEV B, et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation[J].Neuron,2008,58(3): 374-386.
|
37 |
NACHE V, WONGSAMITKUL N, KUSCH J, et al. Deciphering the function of the CNGB1b subunit in olfactory CNG channels[J]. Sci Rep, 2016, 6: 29378.
|
38 |
REBRIK T I, KORENBROT J I. In intact mammalian photoreceptors, Ca2+-dependent modulation of cGMP-gated ion channels is detectable in cones but not in rods[J]. J Gen Physiol, 2004, 123(1): 63-75.
|
39 |
MOLOKANOVA E, KRAJEWSKI J L, SATPAEV D, et al. Subunit contributions to phosphorylation-dependent modulation of bovine rod cyclic nucleotide-gated channels[J].J Physiol, 2003, 552(Pt 2): 345-356.
|
40 |
MÜLLER F, VANTLER M, WEITZ D, et al. Ligand sensitivity of the 2 subunit from the bovine cone cGMP-gated channel is modulated by protein kinase C but not by calmodulin[J]. J Physiol, 2001, 532(Pt 2): 399-409.
|
41 |
WOMACK K B, GORDON S E, HE F, et al. Do phosphatidylinositides modulate vertebrate phototransduction?[J]. J Neurosci, 2000, 20(8): 2792-2799.
|
42 |
BRIGHT S R, RICH E D, VARNUM M D. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3, 4, 5-trisphosphate[J]. Mol Pharmacol, 2007, 71(1): 176-183.
|
43 |
ZHAINAZAROV A B, SPEHR M, WETZEL C H, et al. Modulation of the olfactory CNG channel by Ptdlns(3, 4, 5)P3[J]. J Membr Biol, 2004, 201(1): 51-57.
|
44 |
CHEN S K, KO G Y P, DRYER S E. Somatostatin peptides produce multiple effects on gating properties of native cone photoreceptor cGMP-gated channels that depend on circadian phase and previous illumination[J]. J Neurosci, 2007, 27(45): 12168-12175.
|
45 |
KO G Y P, KO M L, DRYER S E. Circadian phase-dependent modulation of cGMP-gated channels of cone photoreceptors by dopamine and D2 agonist[J]. J Neurosci, 2003, 23(8): 3145-3153.
|
46 |
KO G Y P, KO M L, DRYER S E. Circadian regulation of cGMP-gated channels of vertebrate cone photoreceptors: role of cAMP and Ras[J]. J Neurosci, 2004, 24(6): 1296-1304.
|
47 |
GUPTA V K, RAJALA A, DALY R J, et al. Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel[J]. EMBO Rep, 2010, 11(11): 861-867.
|
48 |
GUPTA V K, RAJALA A, RAJALA R V. Insulin receptor regulates photoreceptor CNG channel activity[J]. Am J Physiol Endocrinol Metab, 2012,303(11): E1363-E1372.
|
49 |
RAJALA R V, MCCLELLAN M E, ASH J D, et al. In vivo regulation of phosphoinositide 3-kinase in retina through light-induced tyrosine phosphorylation of the insulin receptor beta-subunit[J]. J Biol Chem, 2002, 277(45): 43319-43326.
|
50 |
LI G Y, RAJALA A, WIECHMANN A F, et al. Activation and membrane binding of retinal protein kinase Balpha/Akt1 is regulated through light-dependent generation of phosphoinositides[J]. J Neurochem, 2008, 107(5): 1382-1397.
|
51 |
PAQUET-DURAND F, BECK S, MICHALAKIS S, et al. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa[J]. Hum Mol Genet, 2011, 20(5): 941-947.
|
52 |
WANG L, ZOU T D, LIN Y Q, et al. Identification of a novel homozygous variant in the CNGA1 gene in a Chinese family with autosomal recessive retinitis pigmentosa[J]. Mol Med Rep, 2020, 22(3): 2516-2520.
|
53 |
XUE J, HAN Y, ZENG W Z, et al. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel[J]. Neuron, 2022, 110(1): 86-95.e5.
|
54 |
PETERSEN-JONES S M, OCCELLI L M, WINKLER P A, et al. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach[J]. J Clin Invest, 2018,128(1): 190-206.
|
55 |
MICHAELIDES M, ALIGIANIS I A, AINSWORTH J R,et al. Progressive cone dystrophy associated with mutation in CNGB3[J]. Invest Ophthalmol Vis Sci, 2004, 45(6): 1975-1982.
|
56 |
ZHENG X, HU Z, LI H, et al. Structure of the human cone photoreceptor cyclic nucleotide-gated channel[J]. Nat Struct Mol Biol, 2022, 29(1): 40-46.
|
57 |
ZHENG X D, LI H, HU Z S, et al. Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel[J]. Commun Biol, 2022, 5(1): 190.
|
58 |
KARSTENSEN H G, MANG Y, FARK T, et al. The first mutation in CNGA2 in two brothers with anosmia[J]. Clin Genet, 2015, 88(3): 293-296.
|
59 |
SAILANI M R, JINGGA I, MIRMAZLOMI S H,et al. Isolated congenital anosmia and CNGA2 mutation[J]. Sci Rep, 2017, 7(1): 2667.
|