1 |
SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
2 |
RUNG J, CAUCHI S, ALBRECHTSEN A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia[J]. Nat Genet, 2009, 41(10): 1110-1115.
|
3 |
ZEGGINI E, SCOTT L J, SAXENA R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes[J]. Nat Genet, 2008, 40(5): 638-645.
|
4 |
LASRAM K, HALIM NBEN, BENRAHMA H, et al. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the Tunisian population[J].J Diabetes,2015,7(1): 102-113.
|
5 |
DIABETES GENETICS INITIATIVE OF BROAD INSTITUTE OF HARVARD, MIT L U, SAXENA R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science, 2007, 316(5829): 1331-1336.
|
6 |
CONSORTIUM W T C C. Genome-wide association study of 14 000 cases of seven common diseases and 3 000 shared controls[J]. Nature, 2007, 447(7145): 661-678.
|
7 |
STEINTHORSDOTTIR V, THORLEIFSSON G, REYNISDOTTIR I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes[J]. Nat Genet, 2007, 39(6): 770-775.
|
8 |
CHEN G, XU Y, LIN Y H, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population[J]. J Diabetes, 2013, 5(2): 136-145.
|
9 |
LIU N J, XIONG Q, WU H H, et al. The association analysis polymorphism of CDKAL1 and diabetic retinopathy in Chinese Han population[J]. Int J Ophthalmol, 2016, 9(5): 707-712.
|
10 |
PENG D F, WANG J, ZHANG R, et al. CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes[J]. Sci Rep, 2017, 7(1): 8812.
|
11 |
GHOSH C, DAS N, SAHA S, et al. Involvement of Cdkal1 in the etiology of type 2 diabetes mellitus and microvascular diabetic complications: a review[J]. J Diabetes Metab Disord, 2022, 21(1): 991-1001.
|
12 |
BRAMBILLASCA S, ALTKRUEGER A, COLOMBO S F, et al. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells[J]. J Biol Chem, 2012, 287(50): 41808-41819.
|
13 |
WEI F Y, NAGASHIMA K, OHSHIMA T, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion[J]. Nat Med, 2005, 11(10): 1104-1108.
|
14 |
UBEDA M, RUKSTALIS J M, HABENER J F. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity[J]. J Biol Chem, 2006, 281(39): 28858-28864.
|
15 |
LYSSENKO V, JONSSON A, ALMGREN P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes[J]. N Engl J Med, 2008, 359(21): 2220-2232.
|
16 |
GROENEWOUD M J, DEKKER J M, FRITSCHE A,et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps[J]. Diabetologia, 2008, 51(9): 1659-1663.
|
17 |
LEE H A, PARK H, HONG Y S. Sex differences in the effects of CDKAL1 variants on glycemic control in diabetic patients: findings from the Korean genome and epidemiology study[J]. Diabetes Metab J, 2022,46(6): 879-889.
|
18 |
DESHMUKH H A, MADSEN A L, VIÑUELA A,et al.Genome-wide association analysis of pancreatic beta-cell glucose sensitivity[J]. J Clin Endocrinol Metab, 2021, 106(1): 80-90.
|
19 |
ZENG Q, ZOU D, GU S, et al. Different associations between CDKAL1 variants and type 2 diabetes mellitus susceptibility: A Meta-analysis[J]. Front Genet,2022, 12:783078.
|
20 |
何永鑫, 李 雪, 吴余阳, 等. 糖尿病肾病不同中医辨证分型患者中CDKN2A, CDKN2B, IGF2BP2和CDKAL1基因表达研究[J]. 世界科学技术(中医药现代化), 2009, 11(3): 356-360.
|
21 |
ZHOU B, WEI F Y, KANAI N, et al. Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human[J]. Hum Mol Genet, 2014, 23(17): 4639-4650.
|
22 |
HOSSEINIPOOR H, KARIMINEJAD S Y, SALEHI M,et al. The effects of metformin monotherapy and combination of metformin and glibenclamide therapy on the expression of RAGE, Sirt1, and Nrf2 genes in peripheral blood mononuclear cells of type 2 diabetic patients[J]. J Diabetes Metab Disord, 2022, 21(1): 369-377.
|
23 |
SHARAF S A, KANTOUSH N A, AYOUB D F,et al. Altered expression of WFS1 and NOTCH2 genes associated with diabetic nephropathy in T2DM patients[J].Diabetes Res Clin Pract,2018,140: 304-313.
|