吉林大学学报(医学版) ›› 2024, Vol. 50 ›› Issue (4): 1164-1172.doi: 10.13481/j.1671-587X.20240433
收稿日期:
2023-03-18
出版日期:
2024-07-28
发布日期:
2024-08-01
通讯作者:
罗云纲
E-mail:luoygjlu@sina.com
作者简介:
王少如(1992-),女,山东省菏泽市人,在读博士研究生,主要从事牙周组织再生方面的研究。
基金资助:
Received:
2023-03-18
Online:
2024-07-28
Published:
2024-08-01
Contact:
Yungang LUO
E-mail:luoygjlu@sina.com
摘要:
壳寡糖(COS)作为天然多糖壳聚糖(CS)的降解产物,既保留了CS的良好生物相容性、无毒和可生物降解等特点,同时由于糖链缩短使相对分子质量降低,其水溶性和生物活性均得到提高且更容易被生物体吸收利用,近年来受到越来越多的关注。目前国内外学者对CS生物学功能的研究及其在生物医学领域中应用的报道较多,但对COS功能及其应用的研究报道较少。现结合国内外最新研究成果,对COS的主要生物学功能(抗炎、抗肿瘤、抗菌和促组织再生等)及其可能的作用机制进行总结和分析,并阐述其在生物医学领域中应用的研究进展,以期为COS的深入研究及其在生物医学领域中更广泛的应用提供理论依据和参考。
中图分类号:
王少如,罗云纲. 壳寡糖的生物学功能及其在生物医学领域中应用的研究进展[J]. 吉林大学学报(医学版), 2024, 50(4): 1164-1172.
Shaoru WANG,Yungang LUO. Research progress in biological function of chitooligosaccharide and its application in biomedical field[J]. Journal of Jilin University(Medicine Edition), 2024, 50(4): 1164-1172.
1 | XIA W S, LIU P, ZHANG J L, et al. Biological activities of chitosan and chitooligosaccharides[J]. Food Hydrocoll, 2011, 25(2): 170-179. |
2 | LI Z H, YANG F, YANG R D. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups[J]. Int J Biol Macromol, 2015, 75: 378-387. |
3 | 章中华, 王 毅, 李永贵, 等. 壳聚糖在生物医学应用中的研究进展[J]. 生物医学工程研究, 2022, 41(3): 347-352. |
4 | BANO I, ARSHAD M, YASIN T, et al. Chitosan: a potential biopolymer for wound management[J]. Int J Biol Macromol, 2017, 102: 380-383. |
5 | 丁鑫鑫, 周延民, 相星辰, 等. 壳聚糖复合材料在骨组织工程中的研究进展[J]. 华西口腔医学杂志, 2018, 36(4): 441-446. |
6 | AUGUSTINE R, REHMAN S R U, AHMED R, et al. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing[J]. Int J Biol Macromol, 2020, 156: 153-170. |
7 | LEE J Y, TERMSARASAB U, LEE M Y, et al. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery[J]. Acta Biomater, 2017, 57: 262-273. |
8 | TABASSUM N, AHMED S, ALI M A. Chitooligosaccharides and their structural-functional effect on hydrogels: a review[J]. Carbohydr Polym, 2021, 261: 117882. |
9 | JAFARI H, BERNAERTS K V, DODI G, et al. Chitooligosaccharides for wound healing biomaterials engineering[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117: 111266. |
10 | HUANG X H, CHEN M, WU H M, et al. Macrophage polarization mediated by chitooligosaccharide (COS) and associated osteogenic and angiogenic activities[J]. ACS Biomater Sci Eng, 2020, 6(3): 1614-1629. |
11 | PAN Z, CHENG D D, WEI X J, et al. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma[J]. Carbohydr Polym, 2021, 258: 117596. |
12 | NIU X L, WEI Y, LIU Q H, et al. Silver-loaded microspheres reinforced chitosan scaffolds for skin tissue engineering[J]. Eur Polym J, 2020, 134: 109861. |
13 | VO T S, KONG C S, KIM S K. Inhibitory effects of chitooligosaccharides on degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells[J]. Carbohydr Polym, 2011, 84(1): 649-655. |
14 | TRAN A X, WHITFIELD C. Lipopolysaccharides (endotoxins)[A].Encyclopedia of Microbiology[M]. Amsterdam: Elsevier, 2009: 513-528. |
15 | LIU H T, LI W M, LI X Y, et al. Chitosan oligosaccharides inhibit the expression of interleukin-6 in lipopolysaccharide-induced human umbilical vein endothelial cells through p38 and ERK1/2 protein kinases[J]. Basic Clin Pharmacol Toxicol, 2010, 106(5): 362-371. |
16 | LIU H T, HUANG P, MA P, et al. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases[J]. Acta Pharmacol Sin, 2011, 32(4): 478-486. |
17 | LI Y, LIU H T, XU Q S, et al. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response[J]. Carbohydr Polym, 2014, 99: 568-578. |
18 | GUO C C, ZHANG Y, LING T, et al. Chitosan oligosaccharides alleviate colitis by regulating intestinal microbiota and PPARγ/SIRT1-mediated NF-κB pathway[J]. Mar Drugs, 2022, 20(2): 96. |
19 | 杨院平. 抗炎天然产物壳寡糖对炎性肠病保护作用的实验研究[D]. 武汉: 武汉大学, 2015. |
20 | LI S L, LIU J, LIU S Y, et al. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis[J]. J Nanobiotechnol, 2021, 19(1): 343. |
21 | MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13. |
22 | STEIN M, KESHAV S, HARRIS N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation[J]. J Exp Med, 1992, 176(1): 287-292. |
23 | SAHARIAH P, MÁSSON M. Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868. |
24 | YU D W, FENG J Y, YOU H M, et al. The microstructure, antibacterial and antitumor activities of chitosan oligosaccharides and derivatives[J]. Mar Drugs, 2022, 20(1): 69. |
25 | HARVEY A L, EDRADA-EBEL R, QUINN R J. The re-emergence of natural products for drug discovery in the genomics era[J]. Nat Rev Drug Discov, 2015, 14(2): 111-129. |
26 | SALAH R, MICHAUD P, MATI F, et al. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1[J]. Int J Biol Macromol, 2013, 52: 333-339. |
27 | MATTAVEEWONG T, WONGKRASANT P, CHANCHAI S, et al. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling[J]. Carbohydr Polym, 2016, 145: 30-36. |
28 | CHEN J S, ZHOU Z G, ZHENG C J, et al. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy[J]. Carbohydr Polym, 2022, 277: 118869. |
29 | RATANAVARAPORN J, DAMRONGSAKKUL S, KANOKPANONT S, et al. Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatin and chitooligosaccharide scaffolds [J]. J Biomater Sci Polym Ed, 2011, 22(8): 1083-1098. |
30 | CHANDIKA P, KO S C, OH G W, et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application[J]. Int J Biol Macromol, 2015, 81: 504-513. |
31 | WU J, XIAO Z C, CHEN A Q, et al. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration[J]. Acta Biomater, 2018, 71: 293-305. |
32 | HUANG Q L, OUYANG Z X, TAN Y N, et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate[J]. Acta Biomater, 2019, 100: 415-426. |
33 | LIU W, LI J H, CHENG M Q, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus[J]. Biomaterials, 2019, 208: 8-20. |
34 | SPILLER K L, NASSIRI S, WITHEREL C E, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37: 194-207. |
35 | HUANG X H, GUO X, QU L T, et al. Gradient regulation of osteo-immune microenvironment by chitooligosaccharide-containing ion-doped mesoporous silica nanoparticles to accelerate osteogenesis[J]. Appl Mater Today, 2021, 23: 101067. |
36 | GARCÍA M A, DE LA PAZ N, CASTRO C, et al. Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells[J]. J Radiat Res Appl Sci, 2015, 8(2): 190-200. |
37 | ZHOU X, ZHANG X S, ZHOU J J, et al. An investigation of chitosan and its derivatives on red blood cell agglutination[J]. RSC Adv, 2017, 7(20): 12247-12254. |
38 | HO T T, DOAN V K, TRAN N M, et al. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111724. |
39 | EL-HAMMADI M M, DELGADO Á V, MELGUIZO C, et al. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil[J]. Int J Pharm, 2017, 516(1/2): 61-70. |
40 | HU X C, CHEN S M, YIN H, et al. Chitooligosaccharides-modified PLGA nanoparticles enhance the antitumor efficacy of AZD9291 (Osimertinib) by promoting apoptosis[J]. Int J Biol Macromol, 2020, 162: 262-272. |
41 | SETTEN R L, ROSSI J J, HAN S P. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18(6): 421-446. |
42 | ZHENG X L, ZHU Y, FEI W D, et al. Redox-responsive and electrically neutral PLGA nanoparticles for siRNA delivery in human cervical carcinoma cells[J]. J Pharm Innov, 2022, 17(4): 1392-1404. |
43 | LIU X, CHEN L Q, ZHANG Y Y, et al. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA[J]. Eur J Pharm Sci, 2021, 158: 105641. |
44 | CHANDIKA P, OH G W, HEO S Y, et al. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111871. |
45 | ZHOU L Z, CAI L, RUAN H J, et al. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings[J]. Int J Biol Macromol, 2021, 183: 1145-1154. |
46 | LUO C, LIU W J, LUO B H, et al. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer[J]. Carbohydr Polym, 2017, 156: 235-243. |
47 | LI C W, WANG Q, LI J, et al. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway[J]. Int J Nanomedicine, 2016, 11: 373-386. |
48 | YIN N, DU R P, ZHAO F K, et al. Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide[J]. Carbohydr Polym, 2020, 229: 115520. |
49 | CHANDIKA P, KIM M S, KHAN F, et al. Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel[J]. Carbohydr Polym, 2021, 269: 118272. |
50 | ALIDADI S, ORYAN A, BIGHAM-SADEGH A, et al. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat[J]. Carbohydr Polym, 2017, 166: 236-248. |
51 | PARK H H, KO S C, OH G W, et al. Characterization and biological activity of PVA hydrogel containing chitooligosaccharides conjugated with Gallic acid[J]. Carbohydr Polym, 2018, 198: 197-205. |
52 | ZHAO D, SHI C, GUO T T, et al. Multifunctional gel films of marine polysaccharides cross-linked with poly-metal ions for wound healing[J]. Pharmaceuticals, 2022, 15(6): 750. |
53 | RATANAVARAPORN J, KANOKPANONT S, TABATA Y, et al. Modulation of in vitro attachment, proliferation and osteogenic differentiation of rat bone-marrow-derived stem cells using different molecular mass chitosans and their blends with gelatin[J]. J Biomater Sci Polym Ed, 2010, 21(8/9): 979-996. |
54 | THITISET T, DAMRONGSAKKUL S, YODMUANG S, et al. A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering[J]. Biomater Res, 2021, 25(1): 19. |
55 | WANG B, TAN L, DENG D P, et al. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles[J]. Int J Nanomed, 2015, 10: 3417-3427. |
56 | WANG B, GUO Y W, CHEN X F, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2[J]. Int J Nanomed, 2018, 13: 7395-7408. |
[1] | 石雅茹,杨庆祎,徐晓薇. 角化龈形成机制及增量移植材料的研究进展[J]. 吉林大学学报(医学版), 2024, 50(2): 556-563. |
[2] | 徐仲航,何成彦,房学东. 线粒体内膜蛋白与肿瘤关系的研究进展[J]. 吉林大学学报(医学版), 2023, 49(1): 231-236. |
[3] | 夏德庚,张庆宇,矫君君,徐庭瑞,张天翼,仲杨,赵竹兰,马宁,张莉. 前牙修复失败患者再行多学科联合美学修复1例报告及文献复习[J]. 吉林大学学报(医学版), 2022, 48(4): 1058-1064. |
[4] | 张庆宇,夏德庚,徐庭瑞,矫君君,张天翼,赵竹兰,仲杨,张莉,马宁. 可注射型富血小板纤维蛋白在口腔疾病治疗中应用的研究进展[J]. 吉林大学学报(医学版), 2022, 48(3): 832-838. |
[5] | 庞宇轩, 杨柳, 张志鹰, 李江. 三七总皂苷通过上调VEGF表达对大鼠拔牙创愈合的促进作用[J]. 吉林大学学报(医学版), 2019, 45(04): 796-800. |
[6] | 孙红, 闫志文, 李硕峰, 熊艳杰, 梁凡, 李傲, 姚芳莲, 车鹏程. 壳聚糖-明胶-果胶仿生网络膜对间充质干细胞增殖和矿化的影响[J]. 吉林大学学报(医学版), 2019, 45(01): 17-22. |
[7] | 夏轶超, 澈力格尔, 李宝印, 文静, 孙静淳, 王宁宁, 韩冰. 壳聚糖膜覆盖3D打印双相磷酸钙骨组织工程支架的制备和性能[J]. 吉林大学学报(医学版), 2018, 44(04): 770-775. |
[8] | 张强, 刘士博, 杨军星, 韩佳岐, 宋立杰, 徐一驰, 王瑶, 赵楚翘, 王博蔚, 刘志辉. 载VEGF/VAN多层海藻酸盐-壳聚糖缓释微球的制备[J]. 吉林大学学报(医学版), 2017, 43(04): 839-844. |
[9] | 万鑫, 何建平, 张欢, 林玲辉, 张甜, 费瑜. 低分子壳聚糖对缺氧/复氧大鼠心肌细胞中ClC-3表达的影响[J]. 吉林大学学报(医学版), 2016, 42(03): 491-495. |
[10] | . 低分子壳聚糖的抗肝纤维化作用及其对TLR4表达的影响[J]. 吉林大学学报(医学版), 2014, 40(05): 1013-1017. |
[11] | 刘玉艳,于东升,包幸福,高尚,莎莉,胡敏. 不同质量分数N,[KG-3]O-CMC/β-TCP复合材料在模拟体液降解中的pH值变化及其对MG63细胞生长的影响[J]. 吉林大学学报(医学版), 2014, 40(04): 772-776. |
[12] | 林泓兵,赵斌,丁子清,任春霞,林崇韬. 生物活性复合膜对大鼠牙周组织缺损的修复作用[J]. 吉林大学学报(医学版), 2013, 39(5): 888-892. |
[13] | 王朋|费瑜|吕丽丽|张帆|杨明|王洋|邓扬. 水溶性壳聚糖对腹主动脉球囊损伤大鼠血管狭窄的抑制作用[J]. J4, 2012, 38(5): 880-884. |
[14] | 平飞云|苗卓伟|王新木|董 研. 壳聚糖在引导骨再生膜中的应用[J]. J4, 2012, 38(4): 813-816. |
[15] | 佟巨慧, 迟立超, 张颖丽, 付军权, 林玲辉, 费瑞. 羧甲基壳聚糖银的急性和亚急性毒性研究[J]. J4, 2010, 36(4): 673-677. |
|