1 |
HAJISHENGALLIS G, CHAVAKIS T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440.
|
2 |
JURDZIŃSKI K T, POTEMPA J, GRABIEC A M. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential[J]. Clin Epigenetics, 2020, 12(1): 186.
|
3 |
CASADO-PELAEZ M, BUENO-COSTA A, ESTELLER M. Single cell cancer epigenetics[J]. Trends Cancer, 2022, 8(10): 820-838.
|
4 |
SINGH S, SINGH A, SINGH A, et al. Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis[J]. J Exp Bot, 2020, 71(3): 778-792.
|
5 |
BURE I V, NEMTSOVA M V, KUZNETSOVA E B. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis[J]. Int J Mol Sci, 2022, 23(10): 5801.
|
6 |
BENAKANAKERE M R, FINOTI L, PALIOTO D B, et al. Epigenetics, inflammation, and periodontal disease[J]. Curr Oral Health Rep, 2019, 6(1): 37-46.
|
7 |
CÁRDENAS A M, ARDILA L J, VERNAL R, et al. Biomarkers of periodontitis and its differential DNA methylation and gene expression in immune cells: a systematic review[J]. Int J Mol Sci, 2022, 23(19): 12042.
|
8 |
MA Z H, BOLINGER A A, ZHOU J, et al. Bromodomain-containing protein 4 (BRD4): a key player in inflammatory bowel disease and potential to inspire epigenetic therapeutics[J]. Expert Opin Ther Targets, 2023, 27(1): 1-7.
|
9 |
SCHWALM M P, KNAPP S. BET bromodomain inhibitors[J]. Curr Opin Chem Biol, 2022, 68: 102148.
|
10 |
SHI X Y, WANG Y, ZHANG L H, et al. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN[J]. Front Cell Dev Biol, 2022, 10: 1021820.
|
11 |
LEITE J A, GHIROTTO B, TARGHETTA V P, et al. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders[J]. Br J Pharmacol, 2022, 179(8): 1496-1511.
|
12 |
GOMEZ-SANCHEZ J A, PATEL N, MARTIRENA F, et al. Emerging role of HDACs in regeneration and ageing in the peripheral nervous system: repair schwann cells as pivotal targets[J]. Int J Mol Sci, 2022, 23(6): 2996.
|
13 |
GALLE E, WONG C W, GHOSH A, et al. H3K18 lactylation marks tissue-specific active enhancers[J]. Genome Biol, 2022, 23(1): 207.
|
14 |
LU T, ANG C E, ZHUANG X. Spatially resolved epigenomic profiling of single cells in complex tissues [J]. Cell, 2023, 186(10): 2275-2279.
|
15 |
FETAHU I S, TASCHNER-MANDL S. Neuroblastoma and the epigenome [J]. Cancer Metastasis Rev, 2021, 40(1): 173-189.
|
16 |
SHEN F C, ZHUANG S G. Histone acetylation and modifiers in renal fibrosis[J]. Front Pharmacol, 2022, 13: 760308.
|
17 |
CANTLEY M D, DHARMAPATNI A A, ALGATE K, et al. Class Ⅰ and Ⅱ histone deacetylase expression in human chronic periodontitis gingival tissue[J]. J Periodontal Res, 2016, 51(2): 143-151.
|
18 |
LAWLOR L, YANG X B. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering[J]. Int J Oral Sci, 2019, 11(2): 20.
|
19 |
CHANG M C, CHEN Y J, LIAN Y C, et al. Butyrate stimulates histone H3 acetylation, 8-isoprostane production, RANKL expression, and regulated osteoprotegerin expression/secretion in MG-63 osteoblastic cells[J]. Int J Mol Sci, 2018, 19(12): 4071.
|
20 |
INDRELID S H, DONGRE H N, NUNES I P, et al. Human gingival epithelial cells stimulate proliferation, migration, and tube formation of lymphatic endothelial cells in vitro [J]. J Periodontal Res, 2023, 58(3): 596-606.
|
21 |
BUENO M R, ISHIKAWA K H, ALMEIDA-SANTOS G, et al. Lactobacilli attenuate the effect of Aggregatibacter actinomycetemcomitans infection in gingival epithelial cells[J]. Front Microbiol, 2022, 13: 846192.
|
22 |
MARTINS M D, JIAO Y, LARSSON L, et al. Epigenetic modifications of histones in periodontal disease[J]. J Dent Res, 2016, 95(2): 215-222.
|
23 |
DE FARIAS GABRIEL A, WAGNER V P, CORREA C, et al. Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing[J]. Lasers Med Sci, 2019, 34(7): 1465-1472.
|
24 |
MARTINS M D, SILVEIRA F M, MARTINS M A T, et al. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing[J]. J Biophotonics, 2021, 14(2): e202000274.
|
25 |
MAKSYLEWICZ A, BYSIEK A, LAGOSZ K B, et al. BET bromodomain inhibitors suppress inflammatory activation of gingival fibroblasts and epithelial cells from periodontitis patients[J]. Front Immunol, 2019, 10: 933.
|
26 |
YIN L, CHUNG W O. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria[J]. Mucosal Immunol, 2011, 4(4): 409-419.
|
27 |
ZHU F M, XIONG F, HE J C, et al. Brd4 inhibition ameliorates Pyocyanin-mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways[J]. Cell Death Dis, 2020, 11(6): 459.
|
28 |
GILAN O, RIOJA I, KNEZEVIC K, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation[J]. Science, 2020, 368(6489): 387-394.
|
29 |
WANG N, WU R L, COMISH P B, et al. Pharmacological modulation of BET family in sepsis[J]. Front Pharmacol, 2021, 12: 642294.
|
30 |
CHEN X T, MENG F Y, ZHANG J T, et al. Discovery of 2-((2-methylbenzyl)thio)-6-oxo-4-(3, 4, 5-trimethoxyphenyl)-1, 6-dihydropyrimidine-5-carbonitrile as a novel and effective bromodomain and extra-terminal (BET) inhibitor for the treatment of sepsis[J]. Eur J Med Chem, 2022, 238: 114423.
|
31 |
SUN X Y, GAO J K, MENG X, et al. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling[J]. Front Immunol, 2021, 12: 763334.
|
32 |
ZHANG B, YANG Y, YI J R, et al. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis[J]. J Periodontal Res, 2021, 56(5): 991-1005.
|
33 |
TAKEUCH O, AKIRA S. Epigenetic control of macrophage polarization[J]. Eur J Immunol, 2011, 41(9): 2490-2493.
|
34 |
CORRÊA R O, VIEIRA A, SERNAGLIA E M, et al. Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria[J]. Cell Microbiol, 2017, 19(7): e12720.
|
35 |
LARSSON L, THORBERT-MROS S, RYMO L, et al. Influence of epigenetic modifications of the interleukin-10 promoter on IL10 gene expression[J]. Eur J Oral Sci, 2012, 120(1): 14-20.
|
36 |
LU W, ZHANG L, JI K, et al. Regulatory mechanisms of GCN5 in osteogenic differentiation of MSCs in periodontitis[J]. Clin Exp Dent Res, 2023, 9(3): 464-471.
|
37 |
CAO J W, ZHANG Q, YANG Q Y, et al. Epigenetic regulation of osteogenic differentiation of periodontal ligament stem cells in periodontitis[J]. Oral Dis, 2023, 29(7): 2529-2537.
|
38 |
MI J, WANG S S, LIU P P, et al. CUL4B upregulates RUNX2 to promote the osteogenic differentiation of human periodontal ligament stem cells by epigenetically repressing the expression of miR-320c and miR-372/ 373-3p[J]. Front Cell Dev Biol, 2022, 10: 921663.
|
39 |
XUE P, LI B, AN Y, et al. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation[J]. Cell Death Differ, 2016, 23(11): 1862-1872.
|
40 |
LI B, SUN J, DONG Z W, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment[J]. Sci Rep, 2016, 6: 26542.
|
41 |
FEI D D, WANG Y Z, ZHAI Q M, et al. KAT6A regulates stemness of aging bone marrow-derived mesenchymal stem cells through Nrf2/ARE signaling pathway[J]. Stem Cell Res Ther, 2021, 12(1): 104.
|
42 |
SUN J, DONG Z W, ZHANG Y, et al. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering[J]. Sci Rep, 2017, 7(1): 5254.
|
43 |
HUYNH N C, EVERTS V, PAVASANT P, et al. Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells[J]. J Cell Biochem, 2016, 117(6): 1384-1395.
|
44 |
HUYNH N C, EVERTS V, NIFUJI A, et al. Histone deacetylase inhibition enhances in vivo bone regeneration induced by human periodontal ligament cells[J]. Bone, 2017, 95: 76-84.
|
45 |
LI L Y, LIU W J, WANG H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J]. Cell Death Dis, 2018, 9(5): 480.
|
46 |
MA L, WU D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9[J]. Arch Oral Biol, 2021, 129: 105166.
|
47 |
YAN G Q, WANG X, YANG F, et al. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6[J]. J Cell Biochem, 2017, 118(7): 1653-1658.
|
48 |
RAMAIAH M J, TANGUTUR A D, MANYAM R R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy[J]. Life Sci, 2021, 277: 119504.
|
49 |
WANG X G, WASCHKE B C, WOOLAVER R A, et al. HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma[J]. Protein Cell, 2020, 11(7): 472-482.
|
50 |
SUN Y C, HONG J H, NING Z Q, et al. Therapeutic potential of tucidinostat, a subtype-selective HDAC inhibitor, in cancer treatment[J]. Front Pharmacol, 2022, 13: 932914.
|