吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (6): 1629-1634.doi: 10.13481/j.1671-587X.20220632
收稿日期:
2021-10-25
出版日期:
2022-11-28
发布日期:
2022-12-07
通讯作者:
曾雷
E-mail:leizeng@ jlu.edu.cn
作者简介:
梁婷婷(1994-),女,吉林省长春市人,在读硕士研究生,主要从事组蛋白表观遗传修饰在基因表达调控方面的研究。
基金资助:
Received:
2021-10-25
Online:
2022-11-28
Published:
2022-12-07
摘要:
基因表达的转录是指在RNA聚合酶的催化下,以单链DNA为模板,合成mRNA的过程,这一过程需要多种不同蛋白大分子相互协调,在基因组DNA位点上组装成大型稳定的蛋白复合物,通过转录调节在基因表达中发挥核心作用。转录蛋白分子复合物可以通过多价相互作用,形成液-液相分离聚集,定位于细胞核中特异的基因位点处,参与基因转录的调控。目前液-液相分离在转录调控过程中的功能机制尚不完全清楚,现从基因转录抑制、转录激活、转录延伸和剪接等方面阐述液相分离在基因转录过程中的研究进展,总结其对基因表达调控的研究成果,为生物分子液-液相分离在基因转录中的进一步研究提供依据。
中图分类号:
梁婷婷,曾雷. 液-液相分离在基因转录调控中功能机制的研究进展Research progress in functional mechanism of liquid-liquid phase separation in gene transcription regulation[J]. 吉林大学学报(医学版), 2022, 48(6): 1629-1634.
1 | BRANGWYNNE C P, ECKMANN C R, COURSON D S,et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732. |
2 | SABARI B R, DALL’AGNESE A, YOUNG R A. Biomolecular condensates in the nucleus[J]. Trends Biochem Sci, 2020, 45(11): 961-977. |
3 | PENG A, WEBER S C. Evidence for and against liquid-liquid phase separation in the nucleus[J]. Noncoding RNA, 2019, 5(4): 50. |
4 | AMBADIPUDI S, BIERNAT J, RIEDEL D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nat Commun, 2017, 8(1): 275. |
5 | SHORTER J. Prion-like domains program Ewing’s sarcoma[J]. Cell, 2017, 171(1): 30-31. |
6 | HUO X R, JI L Z, ZHANG Y W, et al. The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation[J]. Mol Cell, 2020, 77(2): 368-383.e7. |
7 | BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol, 2017, 18(5): 285-298. |
8 | SU X L, DITLEV J A, HUI E F, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction[J].Science,2016,352(6285): 595-599. |
9 | NOTT T J, PETSALAKI E, FARBER P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles[J]. Mol Cell, 2015, 57(5): 936-947. |
10 | VERNON R M, CHONG P A, TSANG B, et al. Pi-Pi contacts are an overlooked protein feature relevant to phase separation[J]. eLife, 2018, 7: e31486. |
11 | WANG J, CHOI J M, HOLEHOUSE A S, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins[J]. Cell, 2018, 174(3): 688-699.e16. |
12 | MARTIN E W, HOLEHOUSE A S, PERAN I, et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains[J]. Science, 2020, 367(6478): 694-699. |
13 | ALLSHIRE R C, MADHANI H D. Ten principles of heterochromatin formation and function[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 229-244. |
14 | JANSSEN A, COLMENARES S U, KARPEN G H. Heterochromatin: guardian of the genome[J]. Annu Rev Cell Dev Biol, 2018, 34: 265-288. |
15 | CRAMER P. Organization and regulation of gene transcription[J]. Nature, 2019, 573(7772): 45-54. |
16 | PLYS A J, KINGSTON R E. Dynamic condensates activate transcription[J]. Science, 2018, 361(6400): 329-330. |
17 | LARSON A G, ELNATAN D, KEENEN M M, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[J]. Nature, 2017, 547(7662): 236-240. |
18 | STROM A R, EMELYANOV A V, MIR M, et al. Phase separation drives heterochromatin domain formation[J]. Nature, 2017, 547(7662): 241-245. |
19 | ZHAO S, CHENG L L, GAO Y F, et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation[J]. Cell Res, 2019, 29(1): 54-66. |
20 | SANULLI S, TRNKA M J, DHARMARAJAN V,et al.HP1 reshapes nucleosome core to promote phase separation of heterochromatin[J].Nature,2019,575(7782): 390-394. |
21 | PETERLIN B M, PRICE D H. Controlling the elongation phase of transcription with P-TEFb[J]. Mol Cell, 2006, 23(3): 297-305. |
22 | WANG L, HU M L, ZUO M Q, et al. Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin[J]. Cell Res, 2020, 30(5): 393-407. |
23 | ARANDA S, MAS G, DI CROCE L. Regulation of gene transcription by Polycomb proteins[J]. Sci Adv, 2015, 1(11): e1500737. |
24 | TATAVOSIAN R, KENT S, BROWN K, et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation[J]. J Biol Chem, 2019, 294(5): 1451-1463. |
25 | KENT S, BROWN K, YANG C H, et al. Phase-separated transcriptional condensates accelerate target-search process revealed by live-cell single-molecule imaging[J]. Cell Rep, 2020, 33(2): 108248. |
26 | ISONO K, ENDO T A, KU M, et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing[J]. Dev Cell, 2013, 26(6): 565-577. |
27 | ZHOU H B, SONG Z H, ZHONG S, et al. Mechanism of DNA-induced phase separation for transcriptional repressor VRN1[J]. Angewandte Chemie Int Ed, 2019, 58(15): 4858-4862. |
28 | NOZAWA R S, BOTEVA L, SOARES D C, et al. SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs[J]. Cell, 2017, 169(7): 1214-1227.e18. |
29 | SÖDING J, ZWICKER D, SOHRABI-JAHROMI S, et al. Mechanisms for active regulation of biomolecular condensates[J]. Trends Cell Biol, 2020, 30(1): 4-14. |
30 | SCHWARTZ J, CECH T, PARKER R. Biochemical properties and biological functions of FET proteins[J]. Annu Dev Biochem,2015,84(1):355-379. |
31 | MURTHY A C, DIGNON G L, KAN Y, et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain[J]. Nat Struct Mol Biol, 2019, 26(7): 637-648. |
32 | KWON I, KATO M, XIANG S H, et al. Phosphorylation-regulated binding of RNA polymerase Ⅱto fibrous polymers of low-complexity domains[J]. Cell, 2013, 155(5): 1049-1060. |
33 | BURKE K A, JANKE A M, RHINE C L, et al. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase Ⅱ[J]. Mol Cell, 2015, 60(2): 231-241. |
34 | WEI M T, CHANG Y C, SHIMOBAYASHI S F, et al. Nucleated transcriptional condensates amplify gene expression[J]. Nat Cell Biol, 2020, 22(10): 1187-1196. |
35 | KECMAN T, KUŚ K, HEO D H, et al. Elongation/termination factor exchange mediated by PP1 phosphatase orchestrates transcription termination[J]. Cell Rep, 2018, 25(1): 259-269.e5. |
36 | LU Y, WU T T, GUTMAN O, et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression[J].Nat Cell Biol,2020,22(4): 453-464. |
37 | SABARI B R, DALL'AGNESE A, BOIJA A, et al. Coactivator condensation at super-enhancers links phase separation and gene control[J].Science,2018,361(6400): eaar3958. |
38 | SHRINIVAS K, SABARI B R, COFFEY E L, et al. Enhancer features that drive formation of transcriptional condensates[J]. Mol Cell, 2019, 75(3): 549-561.e7. |
39 | HAN X Y, YU D, GU R R, et al. Roles of the BRD4 short isoform in phase separation and active gene transcription[J]. Nat Struct Mol Biol, 2020, 27(4): 333-341. |
40 | MA L, GAO Z Y, WU J G, et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics[J]. Mol Cell, 2021, 81(8): 1682-1697. |
41 | NAIR S J, YANG L, MELUZZI D, et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly[J].Nat Struct Mol Biol, 2019, 26(3): 193-203. |
42 | PARUA P K, BOOTH G T, SANSÓ M, et al. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase Ⅱ[J].Nature,2018, 558(7710): 460-464. |
43 | GUO Y E, MANTEIGA J C, HENNINGER J E, et al. Pol Ⅱ phosphorylation regulates a switch between transcriptional and splicing condensates[J]. Nature, 2019, 572(7770): 543-548. |
44 | ADELMAN K, LIS J T. Promoter-proximal pausing of RNA polymerase Ⅱ: emerging roles in metazoans[J]. Nat Rev Genet, 2012, 13(10): 720-731. |
45 | YIK J H N, CHEN R C, NISHIMURA R, et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase Ⅱ transcription by the coordinated actions of HEXIM1 and 7SK snRNA[J]. Mol Cell, 2003, 12(4): 971-982. |
46 | LUO Z J, LIN C Q, SHILATIFARD A. The super elongation complex (SEC) family in transcriptional control[J].Nat Rev Mol Cell Biol,2012,13(9): 543-547. |
47 | LUO Z J, LIN C Q, GUEST E, et al. The super elongation complex family of RNA polymerase Ⅱ elongation factors: gene target specificity and transcriptional output[J]. Mol Cell Biol, 2012, 32(13): 2608-2617. |
48 | GUO C H, CHE Z Z, YUE J J, et al. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation[J]. Sci Adv, 2020, 6(14): eaay4858. |
49 | HARLEN K M, CHURCHMAN L S. The code and beyond: transcription regulation by the RNA polymerase Ⅱ carboxy-terminal domain[J]. Nat Rev Mol Cell Biol, 2017, 18(4): 263-273. |
50 | PATEL A, LEE H O, JAWERTH L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation[J]. Cell, 2015,162(5): 1066-1077. |
[1] | 范吉林,朱婷婷,田晓玲,刘思佳,苏静,张世亮. 基于房颤中circRNA-miRNA-mRNA网络构建和免疫细胞浸润的生物信息学分析[J]. 吉林大学学报(医学版), 2022, 48(6): 1535-1545. |
[2] | 陈珏,洪莉,李素廷,王治,陈茂,郝梦磊,肖雅,闵洁,胡鸣. 盆底肌损伤后修复过程中囊泡转运相关基因的表达[J]. 吉林大学学报(医学版), 2021, 47(5): 1092-1098. |
[3] | 林瑶,林春霖,王琴,张彬,王少瑜,朱广伟. 微小染色体蛋白家族和染色体结构维持蛋白4基因在宫颈鳞状细胞癌组织中的表达及其生物信息学分析[J]. 吉林大学学报(医学版), 2021, 47(2): 430-437. |
[4] | 李霞,于逸,左海维,周凤娟,辛勇. circRNAs对结直肠癌的抑制作用及其生物信息学分析[J]. 吉林大学学报(医学版), 2020, 46(6): 1283-1287. |
[5] | 王治, 洪莉, 李素廷, 曾婉玲. 基于GEO数据库生物信息学方法分析子宫内膜癌相关基因和候选通路[J]. 吉林大学学报(医学版), 2020, 46(04): 804-809. |
[6] | 陈炳鹏, 任明, 李容杭, 韩青, 王金成. 基因芯片技术检测NOB1对骨肉瘤细胞相关基因的调控作用[J]. 吉林大学学报(医学版), 2018, 44(05): 929-934. |
[7] | 严齐会, 朱慧勇. 转录因子KLFs家族与口腔鳞状细胞癌关系的研究进展[J]. 吉林大学学报(医学版), 2018, 44(03): 679-683. |
[8] | 田丹, 孙新, 安晓婷, 张立岩, 刘杨, 佟海滨, 李坦, 申野, 满枋霖, 颜伟群. HSA-TP5融合基因表达载体的构建及其真核表达[J]. 吉林大学学报(医学版), 2017, 43(05): 948-952. |
[9] | 辛桂杰, 朱海超, 李昊, 温剑平. 最低限度免疫定义基因表达的HCV多表位DNA疫苗对小鼠细胞免疫的诱导作用[J]. 吉林大学学报(医学版), 2016, 42(06): 1071-1075. |
[10] | 齐玲, 王玮瑶, 郑中华, 张以忠, 赵丽微, 钟秀宏, 赵东海, 杨淑艳, 杨宁江, 任旷, 于洪泉. SUMO及SUMO化修饰蛋白在恶性胶质瘤发生中的作用[J]. 吉林大学学报(医学版), 2016, 42(01): 7-10. |
[11] | 刘姝,王霁雪,吴雅臻,王淑梅. 色素上皮源性因子基因转染对巨噬细胞诱导大鼠增生性玻璃体视网膜病变的抑制作用及其机制[J]. 吉林大学学报(医学版), 2013, 39(6): 1181-1185. |
[12] | 张雪,陈萍,毕云枫,曲宁宁,刘琼,孙鑫泽. 木糖氧化产碱菌中亚硝酸盐还原酶基因的克隆与表达[J]. 吉林大学学报(医学版), 2013, 39(4): 690-693. |
[13] | 孙晓宇,何钟勤,刘晓红,高心,钟丞,薛莹. 殊异韦荣菌sahH基因的克隆、表达和纯化[J]. 吉林大学学报(医学版), 2013, 39(4): 704-709. |
[14] | 贾晓辉,罗建民,刘亚平,尹婉宜,张丽红. SHIP和Caspase-3 mRNA在骨髓增生异常综合征患者骨髓组织中的表达及其临床意义[J]. 吉林大学学报(医学版), 2013, 39(3): 554-558. |
[15] | 贺梦子,赵银龙,刘晓冬,马淑梅,刘欣. 甲状腺乳头状癌组织中差异表达miRNA及其靶基因的筛选和预测[J]. 吉林大学学报(医学版), 2013, 39(1): 99-103. |
|