吉林大学学报(医学版) ›› 2024, Vol. 50 ›› Issue (3): 864-871.doi: 10.13481/j.1671-587X.20240334
• 综述 • 上一篇
收稿日期:
2023-02-07
出版日期:
2024-05-28
发布日期:
2024-07-01
通讯作者:
赵洪岩
E-mail:zhao_hongy@jlu.edu.cn
作者简介:
于依岩(1998-),女,河北省石家庄市人,在读硕士研究生,主要从事牙体牙髓病材料临床应用方面的研究。
基金资助:
Yiyan YU,Zhimin ZHANG,Jiawen CHEN,Xin LIU,Yan LI,Hongyan ZHAO()
Received:
2023-02-07
Online:
2024-05-28
Published:
2024-07-01
Contact:
Hongyan ZHAO
E-mail:zhao_hongy@jlu.edu.cn
摘要:
巨噬细胞作为机体免疫系统的重要组成部分,可以在不同环境中被不同细胞分子诱导极化为M1和M2型巨噬细胞,参与各种疾病的进展。在炎症反应中,M1型巨噬细胞主要作为促炎细胞,促进炎症进展、组织破坏和骨吸收;M2型巨噬细胞作为抑炎细胞参与组织的愈合和骨修复。在肿瘤微环境中,M1和M2型巨噬细胞的作用则相反。牙周炎和牙髓炎等炎症反应及口腔鳞状细胞癌(OSCC)是口腔中最常见的炎症和肿瘤。因此,现就国内外相关研究,对巨噬细胞在牙周炎、种植体周围炎和牙髓炎等口腔炎症反应,正畸过程中的骨改建和OSCC中的极化进行总结,阐述巨噬细胞在炎症、肿瘤和骨改建过程中的代谢活动及巨噬细胞极化调控疾病发生发展的机制,为临床治疗提供新思路。
中图分类号:
于依岩,张志民,陈佳文,刘新,李岩,赵洪岩. 巨噬细胞极化与口腔疾病关系的研究进展[J]. 吉林大学学报(医学版), 2024, 50(3): 864-871.
Yiyan YU,Zhimin ZHANG,Jiawen CHEN,Xin LIU,Yan LI,Hongyan ZHAO. Research progress in relationship between macrophage polarization and oral diseases[J]. Journal of Jilin University(Medicine Edition), 2024, 50(3): 864-871.
1 | MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13. |
2 | MURRAY P J. Macrophage polarization[J]. Annu Rev Physiol, 2017, 79: 541-566. |
3 | CHEN Y N, HU M R, WANG L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. |
4 | KO Y, LEE E M, PARK J C, et al. Salivary microbiota in periodontal health and disease and their changes following nonsurgical periodontal treatment[J]. J Periodontal Implant Sci, 2020, 50(3): 171-182. |
5 | PARISI L, GINI E, BACI D, et al. Macrophage polarization in chronic inflammatory diseases: killers or builders?[J]. J Immunol Res, 2018, 2018: 8917804. |
6 | SUN X Y, GAO J K, MENG X, et al. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling[J]. Front Immunol, 2021, 12: 763334. |
7 | HUANG X, WANG X X, MA L, et al. M2 macrophages with inflammation tropism facilitate cementoblast mineralization[J]. J Periodontol, 2023, 94(2): 290-300. |
8 | MIYASHITA Y, KURAJI R, ITO H, et al. Wound healing in periodontal disease induces macrophage polarization characterized by different arginine-metabolizing enzymes[J]. J Periodontal Res, 2022, 57(2): 357-370. |
9 | ZHANG W J, GUAN N, ZHANG X M, et al. Study on the imbalance of M1/M2 macrophage polarization in severe chronic periodontitis[J]. Technol Health Care, 2023, 31(1): 117-124. |
10 | ZHUANG Z, YOSHIZAWA-SMITH S, GLOWACKI A, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models[J]. J Dent Res, 2019, 98(2): 200-208. |
11 | GALARRAGA-VINUEZA M E, DOHLE E, RAMANAUSKAITE A, et al. Anti-inflammatory and macrophage polarization effects of Cranberry Proanthocyanidins (PACs) for periodontal and peri-implant disease therapy[J]. J Periodontal Res, 2020, 55(6): 821-829. |
12 | NI C, ZHOU J, KONG N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment[J]. Biomaterials, 2019, 206: 115-132. |
13 | WANG Y, LI C Y, WAN Y, et al. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation[J]. Small, 2021, 17(41): e2101505. |
14 | HE W D, ZHANG N, LIN Z S. MicroRNA-125a-5p modulates macrophage polarization by targeting E26 transformation-specific variant 6 gene during orthodontic tooth movement[J]. Arch Oral Biol, 2021, 124: 105060. |
15 | KOH T J, DIPIETRO L A. Inflammation and wound healing: the role of the macrophage[J]. Expert Rev Mol Med, 2011, 13: e23. |
16 | 张 艺, 张晓梦, 史俊宇, 等. 巨噬细胞极化在种植体周围组织愈合的作用及研究进展[J]. 口腔医学, 2020, 40(7): 644-647. |
17 | GALARRAGA-VINUEZA M E, OBREJA K, RAMANAUSKAITE A, et al. Macrophage polarization in peri-implantitis lesions[J]. Clin Oral Investig, 2021, 25(4): 2335-2344. |
18 | FRETWURST T, GARAICOA-PAZMINO C, NELSON K, et al. Characterization of macrophages infiltrating peri-implantitis lesions[J]. Clin Oral Implants Res, 2020, 31(3): 274-281. |
19 | GUO X B, BAI J X, GE G R, et al. Bioinspired peptide adhesion on Ti implants alleviates wear particle-induced inflammation and improves interfacial osteogenesis[J]. J Colloid Interface Sci, 2022, 605: 410-424. |
20 | GAO L, FAN F, WANG L N, et al. Polarization of macrophages in the trigeminal ganglion of rats with pulpitis[J]. J Oral Rehabil, 2022, 49(2): 228-236. |
21 | JIA Y C, YANG W C, ZHANG K H, et al. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes[J]. Acta Biomater, 2019, 83: 291-301. |
22 | LIU J A, YU J, CHEUNG C W. Immune actions on the peripheral nervous system in pain[J]. Int J Mol Sci, 2021, 22(3): 1448. |
23 | FILIPPINI H F, SCALZILLI P A, COSTA K M, et al. Activation of trigeminal ganglion satellite glial cells in CFA-induced tooth pulp pain in rats[J]. PLoS One, 2018, 13(11): e0207411. |
24 | FUKADA S Y, SILVA T A, GARLET G P, et al. Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases[J]. Oral Microbiol Immunol, 2009, 24(1): 25-31. |
25 | DAI X Z, MA R Y, JIANG W Y, et al. Enterococcus faecalis-induced macrophage necroptosis promotes refractory apical periodontitis[J]. Microbiol Spectr, 2022, 10(4): e0104522. |
26 | 林冬佳, 彭志翔, 高 燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438. |
27 | WEBER M, SCHLITTENBAUER T, MOEBIUS P, et al. Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts[J]. Clin Oral Investig, 2018, 22(1): 385-394. |
28 | SCHMIDT A, ZHANG X M, JOSHI R N, et al. Human macrophages induce CD4+Foxp3(+) regulatory T cells via binding and re-release of TGF-Β[J]. Immunol Cell Biol, 2016, 94(8): 747-762. |
29 | JIANG C, LI Z, QUAN H, et al. Osteoimmunology in orthodontic tooth movement[J]. Oral Dis, 2015, 21(6): 694-704. |
30 | HE D, KOU X, YANG R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015, 94(9): 1286-1294. |
31 | WANG Y, ZHANG H W, SUN W, et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement[J]. Sci Rep, 2018, 8(1): 16788. |
32 | HE D, KOU X, LUO Q, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015, 94(1): 129-139. |
33 | GIL A P S, HAAS O L J R, MÉNDEZ-MANJÓN I, et al. Alveolar corticotomies for accelerated orthodontics: a systematic review[J]. J Craniomaxillofac Surg, 2018, 46(3): 438-445. |
34 | MAKHMARI S A AL, KAKLAMANOS E G, ATHANASIOU A E. Short-term and long-term effectiveness of powered toothbrushes in promoting periodontal health during orthodontic treatment: a systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2017, 152(6): 753-766. |
35 | LEE Y J, LEE T Y. External root resorption during orthodontic treatment in root-filled teeth and contralateral teeth with vital pulp: a clinical study of contributing factors[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1): 84-91. |
36 | ZHANG S T, ZHANG H W, JIN Z C, et al. Fucoidan inhibits tooth movement by promoting restorative macrophage polarization through the STAT3 pathway[J]. J Cell Physiol, 2020, 235(9): 5938-5950. |
37 | PAN Y Y, YU Y D, WANG X J, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. |
38 | OCHOA M C, MINUTE L, RODRIGUEZ I, et al. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells[J]. Immunol Cell Biol, 2017, 95(4): 347-355. |
39 | MUSOLINO A, GRADISHAR W J, RUGO H S, et al. Role of Fcγ receptors in HER2-targeted breast cancer therapy[J]. J Immunother Cancer, 2022, 10(1): e003171. |
40 | NI Y H, DING L, HUANG X F, et al. Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients[J]. Tumour Biol, 2015, 36(7): 5291-5298. |
41 | KALOGIROU E M, TOSIOS K I, CHRISTOPOULOS P F. The role of macrophages in oral squamous cell carcinoma[J]. Front Oncol, 2021, 11: 611115. |
42 | MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. |
43 | BOUTILIER A J, ELSAWA S F. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. |
44 | HADRUP S, DONIA M, THOR STRATEN P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment[J]. Cancer Microenviron, 2013, 6(2): 123-133. |
45 | SUSEK K H, KARVOUNI M, ALICI E, et al. The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment[J]. Front Immunol, 2018, 9: 2159. |
46 | MOSSER D M, EDWARDS J P. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. |
47 | FAN Z S, YU P, WANG Y, et al. NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors[J]. Blood, 2006, 107(4): 1342-1351. |
48 | XU F, WEI Y, TANG Z, et al. Tumor-associated macrophages in lung cancer: friend or foe?(Review)[J]. Mol Med Rep, 2020, 22(5): 4107-4115. |
49 | OBERMAJER N, MUTHUSWAMY R, ODUNSI K, et al. PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment[J]. Cancer Res, 2011, 71(24): 7463-7470. |
50 | PARKER K H, SINHA P, HORN L A, et al. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells[J]. Cancer Res, 2014, 74(20): 5723-5733. |
51 | BAIG M S, ROY A, RAJPOOT S, et al. Tumor-derived exosomes in the regulation of macrophage polarization[J]. Inflamm Res, 2020, 69(5): 435-451. |
52 | LOBB R J, VAN AMERONGEN R, WIEGMANS A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance[J]. Int J Cancer, 2017, 141(3): 614-620. |
53 | CAI J H, QIAO B, GAO N, et al. Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p [J]. Am J Physiol Cell Physiol, 2019, 316(5): C731-C740. |
54 | PANG X, WANG S S, ZHANG M, et al. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway[J]. Cancer Immunol Immunother, 2021, 70(4): 1015-1029. |
55 | ZHANG M, HU C, MOSES N, et al. HDAC6 regulates DNA damage response via deacetylating MLH1[J]. J Biol Chem, 2019, 294(15): 5813-5826. |
56 | TSENG C C, HUANG S Y, TSAI H P, et al. HDAC6 is a prognostic biomarker that mediates IL-13 expression to regulate macrophage polarization through AP-1 in oral squamous cell carcinoma[J]. Sci Rep, 2022, 12(1): 10513. |
57 | SILVA S DDA, MARCHI F A, SU J, et al. Co-overexpression of TWIST1-CSF1 is a common event in metastatic oral cancer and drives biologically aggressive phenotype[J]. Cancers, 2021, 13(1): 153. |
58 | YUAN Y, WANG Z Y, CHEN M Q, et al. Macrophage-derived exosomal miR-31-5p promotes oral squamous cell carcinoma tumourigenesis through the large tumor suppressor 2-mediated hippo signalling pathway[J]. J Biomed Nanotechnol, 2021, 17(5): 822-837. |
59 | WEBER M, WEHRHAN F, BARAN C, et al. Malignant transformation of oral leukoplakia is associated with macrophage polarization[J]. J Transl Med, 2020, 18(1): 11. |
60 | YOU Y H, TIAN Z W, DU Z, et al. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop[J]. J Exp Clin Cancer Res, 2022, 41(1): 10. |
61 | COHEN E E W, BELL R B, BIFULCO C B, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)[J]. J Immunother Cancer, 2019, 7(1): 184. |
62 | GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. |
63 | 沈 静, 杨 威. 载脂蛋白A1对霍奇金淋巴瘤预后的影响[J]. 中国实用内科杂志, 2023, 43(1): 63-68. |
64 | 江懿佳, 王青青, 刘 杨. PD-1在巨噬细胞中的表达及对其功能的调控[J]. 中国免疫学杂志, 2020, 36(17): 2165-2168. |
65 | YUAN Y, JIAO P F, WANG Z Y, et al. Endoplasmic reticulum stress promotes the release of exosomal PD-L1 from head and neck cancer cells and facilitates M2 macrophage polarization[J]. Cell Commun Signal, 2022, 20(1): 12. |
[1] | 唐晶,李环,张硕,姜立刚. 急性缺血性脑卒中患者血清中同型半胱氨酸与炎症反应及氧化应激的关联性分析[J]. 吉林大学学报(医学版), 2024, 50(3): 786-790. |
[2] | 杨爽,许娜,张剑旭,孙成彪,王燕,董明鑫,刘文森. 甜叶悬钩子苷对脊髓损伤小鼠运动功能障碍和神经炎症的改善作用及其机制[J]. 吉林大学学报(医学版), 2024, 50(2): 326-335. |
[3] | 唐红梅,李月蛟,王星,王志彬,袁谢芳,王孝芸. 桔梗元参汤对过敏性哮喘小鼠气道炎症和黏液分泌的影响及其机制[J]. 吉林大学学报(医学版), 2024, 50(1): 10-17. |
[4] | 刘扬,路明,洪文,黄克林. 姜黄素联合粪菌移植对DSS诱导的小鼠溃疡性结肠炎的改善作用[J]. 吉林大学学报(医学版), 2024, 50(1): 136-142. |
[5] | 于洋,田丹,倪东贺,张铎. 基于罗汉果治疗糖尿病肾病机制的网络药理学和分子对接分析[J]. 吉林大学学报(医学版), 2024, 50(1): 161-167. |
[6] | 曾洁,俞雪燕,罗婷,徐江. PD-L1对人口腔鳞状细胞癌细胞增殖、迁移和侵袭的影响[J]. 吉林大学学报(医学版), 2024, 50(1): 18-24. |
[7] | 姜聪,徐文洲,李红艳,孙悦,阿兰. 中重度牙周炎患者维护期应用PDCA循环管理模式联合脉冲式冲牙器的临床疗效[J]. 吉林大学学报(医学版), 2024, 50(1): 221-227. |
[8] | 葛亚杰,徐文,关诗敏,王丽娜. 多囊卵巢综合征病因及其发病机制的研究进展[J]. 吉林大学学报(医学版), 2024, 50(1): 288-294. |
[9] | 周雪冰,林千千,李艳春. 聚岩藻多糖对小鼠巨噬细胞分泌炎症因子的影响及其机制[J]. 吉林大学学报(医学版), 2023, 49(6): 1452-1456. |
[10] | 胡志宽,何思琦,蒋维杰,赵贵芳,张佳,齐玲. 脂多糖对小鼠视网膜Müller细胞和小胶质细胞共培养体系中炎症因子水平的影响及其机制[J]. 吉林大学学报(医学版), 2023, 49(5): 1140-1146. |
[11] | 刘心雨,张可鹏,李欣怡,包涵,张皓岩,胡玲,朱宪春. 无托槽隐形矫治器治疗牙周炎致前牙扇形移位1例报告及文献复习[J]. 吉林大学学报(医学版), 2023, 49(4): 1046-1052. |
[12] | 张湘豫,胡溢洪,韩语诚,邹先琼. 1-磷酸神经酰胺转运蛋白对人口腔鳞状细胞癌HSC-3细胞生物学行为的影响[J]. 吉林大学学报(医学版), 2023, 49(4): 875-883. |
[13] | 史乃旭,郝苗,张天夫,赵柯林,黄子嫣,李春艳,王晓峰. 黄芩素对人舌鳞状细胞癌CAL27细胞增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(4): 985-993. |
[14] | 李海涛, 李沁, 蔡飞, 胡国富, 滕云飞. 芹菜素对小鼠RAW264.7巨噬细胞极化和炎症反应的作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(3): 549-556. |
[15] | 王星烨,孔祥日,金梦丽,王冰梅,黎明全. β-谷甾醇对阿尔茨海默病模型小鼠认知功能的改善作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(3): 599-607. |
|