吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (4): 1137-1144.doi: 10.13481/j.1671-587X.20250431
• 综述 • 上一篇
收稿日期:2024-03-12
接受日期:2024-07-20
出版日期:2025-07-28
发布日期:2025-08-25
通讯作者:
宗敏茹
E-mail:zongmr@jlu.edu.cn
作者简介:李文瑄(1998-),男,吉林省通化市人,在读医学硕士,主要从事神经康复方面的研究。
基金资助:Received:2024-03-12
Accepted:2024-07-20
Online:2025-07-28
Published:2025-08-25
Contact:
Minru ZONG
E-mail:zongmr@jlu.edu.cn
摘要:
外周神经损伤(PNI)是常见的神经损伤疾病。作为神经髓鞘最主要的组成细胞,雪旺氏细胞(SCs)在PNI后的修复中起重要作用。PNI后,SCs被激活,并快速迁移至损伤部位,与内皮细胞、细胞外基质(ECM)和成纤维细胞等组成连接远近残端的神经桥,为轴突的形成提供通道,引导轴突再生。SCs向受损神经部位快速迁移能力大小是影响神经桥形成的关键因素。ECM、神经营养因子(NT)、非编码RNA[特别是长链非编码RNA(lncRNA)和微小RNA(miRNA)]及多种转录因子等,通过多种信号转导途径,参与SCs迁移能力的调控,进而影响外周神经损伤后的修复,但目前为止,尚无关于影响PNI中SCs迁移能力因素及其作用机制的系统研究。现从ECM、NT、非编码RNA和转录因子等方面系统综述PNI后影响SCs迁移能力的各种因素及其相关的信号转导通路,为系统理解SCs在PNI修复中的作用提供依据,为全面分析PNI后的修复机制提供参考。
中图分类号:
李文瑄,宗敏茹. 雪旺氏细胞迁移在外周神经损伤修复中作用的研究进展[J]. 吉林大学学报(医学版), 2025, 51(4): 1137-1144.
Wenxuan LI,Minru ZONG. Research progress in role of migration of Schwann cells in repairment of peripheral nerve injury[J]. Journal of Jilin University(Medicine Edition), 2025, 51(4): 1137-1144.
| [1] | CHEN S H, LIEN P H, LIN F H, et al. Aligned core-shell fibrous nerve wrap containing Bletilla striata polysaccharide improves functional outcomes of peripheral nerve repair[J]. Int J Biol Macromol, 2023, 241: 124636. |
| [2] | HUANG C, ZHENG Y N, JI R J, et al. GPNMB promotes peripheral nerve regeneration by activating the Erk1/2 and Akt pathways via binding Na+/K+-ATPase α1 in Schwann cells[J]. Exp Neurol, 2024, 373: 114687. |
| [3] | SHEN Y Y, ZHU J, LIU Q Y, et al. Up-regulation of CD146 in schwann cells following peripheral nerve injury modulates schwann cell function in regeneration[J]. Front Cell Neurosci, 2021, 15: 743532. |
| [4] | 蒋 锐, 於子卫. 细胞外基质在周围神经修复组织工程学中应用的研究进展[J]. 听力学及言语疾病杂志, 2018, 26(5): 556-560. |
| [5] | SOHN E J, PARK H T. microRNA mediated regulation of schwann cell migration and proliferation in peripheral nerve injury[J]. Biomed Res Int, 2018, 2018: 8198365. |
| [6] | 彭 颖, 林浩东. 长链非编码RNA在周围神经损伤和神经再生中的调控作用[J]. 中国修复重建外科杂志, 2021, 35(8): 1051-1056. |
| [7] | 张涵亮, 陈 俊. 神经生长因子修复周围神经的临床疗效观察[J]. 吉林大学学报(医学版), 2011, 37(2): 303. |
| [8] | XU Z Y, ORKWIS J A, DEVINE B M, et al. Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression[J]. J Tissue Eng Regen Med, 2020, 14(2): 229-242. |
| [9] | MIN Q, PARKINSON D B, DUN X P. Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge[J]. Glia, 2021, 69(2): 235-254. |
| [10] | CATTIN A L, BURDEN J J, VAN EMMENIS L, et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves[J]. Cell, 2015, 162(5): 1127-1139. |
| [11] | CHEN B, CHEN Q, PARKINSON D B, et al. Analysis of schwann cell migration and axon regeneration following nerve injury in the sciatic nerve bridge[J]. Front Mol Neurosci, 2019, 12: 308. |
| [12] | TORIGOE K, TANAKA H F, TAKAHASHI A, et al. Basic behavior of migratory Schwann cells in peripheral nerve regeneration[J]. Exp Neurol, 1996, 137(2): 301-308. |
| [13] | BAI M X, KANG N, XU Y, et al. The influence of tag sequence on recombinant humanized collagen (rhCol) and the evaluation of rhCol on Schwann cell behaviors[J]. Regen Biomater, 2023, 10: rbad089. |
| [14] | TORRES-MEJÍA E, TRÜMBACH D, KLEEBERGER C, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis[J]. Sci Rep, 2020, 10(1): 1984. |
| [15] | YU P, ZHANG G H, HOU B, et al. Effects of ECM proteins (laminin, fibronectin, and type Ⅳ collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury[J]. Front Bioeng Biotechnol, 2023, 11: 1133718. |
| [16] | NOCERA G, JACOB C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury[J]. Cell Mol Life Sci, 2020, 77(20): 3977-3989. |
| [17] | BALAKRISHNAN A, BELFIORE L, CHU T H, et al. Insights into the role and potential of schwann cells for peripheral nerve repair from studies of development and injury[J]. Front Mol Neurosci, 2021, 13: 608442. |
| [18] | SUZUKI T, KADOYA K, ENDO T, et al. Molecular and regenerative characterization of repair and non-repair schwann cells[J]. Cell Mol Neurobiol, 2023, 43(5): 2165-2178. |
| [19] | LIU S Y, LIU Y J, ZHOU L P, et al. XT-type DNA hydrogels loaded with VEGF and NGF promote peripheral nerve regeneration via a biphasic release profile[J]. Biomater Sci, 2021, 9(24): 8221-8234. |
| [20] | ADAM M I, LIN L, MAKIN A M, et al. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone[J]. Neural Regen Res, 2023, 18(6): 1364-1370. |
| [21] | LI R, XU J H, RAO Z L, et al. Facilitate angiogenesis and neurogenesis by growth factors integrated decellularized matrix hydrogel[J]. Tissue Eng Part A, 2021, 27(11/12): 771-787. |
| [22] | LIU Y P, LUO Z R, WANG C, et al. Electroacupuncture promoted nerve repair after peripheral nerve injury by regulating miR-1b and its target brain-derived neurotrophic factor[J]. Front Neurosci, 2020, 14: 525144. |
| [23] | LI Y G, WANG X W, YAN H C, et al. Gastrodin promotes the regeneration of peripheral nerves by regulating miR-497/BDNF axis[J]. BMC Complement Med Ther, 2022, 22(1): 45. |
| [24] | TSUCHIMOCHI A, ENDO C, MOTOYOSHI M, et al. Effect of low-intensity pulsed ultrasound on orofacial sensory disturbance following inferior alveolar nerve injury: Role of neurotrophin-3 signaling[J]. Eur J Oral Sci, 2021, 129(5): e12810. |
| [25] | XIA L, LI P, BI W C, et al. LncRNA HAGLR promotes the proliferation, migration, and neurotrophic factor production of Schwann cells via miR-204/CDK5R1 after sciatic nerve injury[J]. J Neuropathol Exp Neurol, 2023, 82(4): 324-332. |
| [26] | PAN B, GUO D, JING L, et al. Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury[J]. Neural Regen Res, 2023, 18(5): 1147-1153. |
| [27] | LI G, LI X, LI Z Y, et al. Sox2ot/miR-9/Cthrc1 promote proliferation and migration of schwann cells following nerve injury[J]. Neuroscience, 2023, 519: 47-59. |
| [28] | FENG Y M, SHAO J, CAI M, et al. Long noncoding RNA H19 regulates degeneration and regeneration of injured peripheral nerves[J]. Neural Regen Res, 2023, 18(8): 1847-1851. |
| [29] | WU G Z, LI X Y, LI M Y, et al. Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p[J]. Exp Cell Res, 2020, 390(1): 111937. |
| [30] | YAO C, CHEN Y P, WANG J, et al. LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury[J]. Glia, 2020, 68(3): 670-679. |
| [31] | MA Y B, ZHAI D W, ZHANG W Z, et al. Down-regulation of long non-coding RNA MEG3 promotes Schwann cell proliferation and migration and repairs sciatic nerve injury in rats[J]. J Cell Mol Med, 2020, 24(13): 7460-7469. |
| [32] | TIAN M Y, YANG Y D, QIN W T, et al. Electroacupuncture promotes nerve regeneration and functional recovery through regulating lncRNA GAS5 targeting miR-21 after sciatic nerve injury[J]. Mol Neurobiol, 2024, 61(2): 935-949. |
| [33] | XIA L, LI P, BI W C, et al. CDK5R1 promotes Schwann cell proliferation, migration, and production of neurotrophic factors via CDK5/BDNF/TrkB after sciatic nerve injury[J]. Neurosci Lett, 2023, 817: 137514. |
| [34] | LIU Q Y, MIAO Y, WANG X H, et al. Increased levels of miR-3099 induced by peripheral nerve injury promote Schwann cell proliferation and migration[J]. Neural Regen Res, 2019, 14(3): 525-531. |
| [35] | ZHANG Q, GUO C K, LIU L J, et al. miR-148b-3p suppresses the proliferation and migration of Schwann cells by targeting USP6 following sciatic nerve injury[J]. Neurol Res, 2023, 45(11): 1035-1043. |
| [36] | SHEN Y Y, CHENG Z C, CHEN S L, et al. Dysregulated miR-29a-3p/PMP22 modulates schwann cell proliferation and migration during peripheral nerve regeneration[J]. Mol Neurobiol, 2022, 59(2): 1058-1072. |
| [37] | QIAO P P, WU W S, WU Y M, et al. miR-328a-3p modulates the proliferative and migratory abilities of Schwann cells in peripheral nerves[J]. Neurosci Lett, 2022, 791: 136893. |
| [38] | LI S Y, WU W S, ZHANG J, et al. Regulation of Schwann cell proliferation and migration via miR-195-5p-induced Crebl2 downregulation upon peripheral nerve damage[J]. Front Cell Neurosci, 2023, 17: 1173086. |
| [39] | CHENG Z H, ZHANG Y W, TIAN Y C, et al. Cyr61 promotes Schwann cell proliferation and migration via αvβ3 integrin[J]. BMC Mol Cell Biol, 2021, 22(1): 21. |
| [40] | VELASCO-AVILES S, PATEL N, CASILLAS-BAJO A, et al. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class Ⅱa Hdacs to ensure peripheral nerve myelination and repair[J]. eLife, 2022, 11: e72917. |
| [41] | SHEN M, CHEN Y H, TANG W, et al. Semaphorin 3E promote Schwann cell proliferation and migration[J]. Exp Cell Res, 2022, 412(2): 113019. |
| [42] | WANG Y, GAO N N, FENG Y M, et al. Protein kinase C theta (Prkcq) affects nerve degeneration and regeneration through the c-fos and c-Jun pathways in injured rat sciatic nerves[J]. Exp Neurol, 2021, 346: 113843. |
| [43] | WAGSTAFF L J, GOMEZ-SANCHEZ J A, FAZAL S V, et al. Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun[J]. eLife, 2021, 10: e62232. |
| [44] | GUAN T C, GUO B B, ZHANG W X, et al. The activation of gastric inhibitory peptide/gastric inhibitory peptide receptor axis via sonic hedgehog signaling promotes the bridging of gapped nerves in sciatic nerve injury[J]. J Neurochem, 2023, 165(6): 842-859. |
| [45] | KLYMENKO A, LUTZ D. Melatonin signalling in schwann cells during neuroregeneration[J]. Front Cell Dev Biol, 2022, 10: 999322. |
| [46] | PAN B, JING L, CAO M H, et al. Melatonin promotes Schwann cell proliferation and migration via the shh signalling pathway after peripheral nerve injury[J]. Eur J Neurosci, 2021, 53(3): 720-731. |
| [47] | LU P J, WANG G, LU X H, et al. Elevated matrix metalloproteinase 9 supports peripheral nerve regeneration via promoting Schwann cell migration[J]. Exp Neurol, 2022, 352: 114020. |
| [48] | BROSIUS LUTZ A, LUCAS T A, CARSON G A, et al. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury[J]. J Neuroinflammation, 2022, 19(1): 105. |
| [49] | TAKAKU S, TSUKAMOTO M, NIIMI N, et al. Exendin-4 promotes schwann cell survival/migration and myelination in vitro [J]. Int J Mol Sci, 2021, 22(6): 2971. |
| [50] | YANG J Q, WANG B X, WANG Y T, et al. Exosomes derived from adipose mesenchymal stem cells carrying miRNA-22-3p promote schwann cells proliferation and migration through downregulation of PTEN[J]. Dis Markers, 2022, 2022: 7071877. |
| [51] | PAN B, HUO T Q, HU Y Z, et al. Exendin-4 promotes schwann cell proliferation and migration via activating the jak-STAT pathway after peripheral nerve injury[J]. Neuroscience, 2020, 437: 1-10. |
| [52] | LIN G T, ZHANG H Y, SUN F, et al. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells[J]. Transl Androl Urol, 2016, 5(2): 167-175. |
| [53] | WU Q F, XIE J T, ZHU X L, et al. Runt-related transcription factor 3, mediated by DNA-methyltransferase 1, regulated Schwann cell proliferation and myelination during peripheral nerve regeneration via JAK/STAT signaling pathway[J]. Neurosci Res, 2023, 192: 1-10. |
| [54] | ZENG X Y, BIAN W, LIU Z W, et al. Muscle-derived stem cell exosomes with overexpressed miR-214 promote the regeneration and repair of rat sciatic nerve after crush injury to activate the JAK2/STAT3 pathway by targeting PTEN[J]. Front Mol Neurosci, 2023, 16: 1146329. |
| [55] | ZHOU X, ZHAN Z Y, TANG C G, et al. Silencing Celsr2 inhibits the proliferation and migration of Schwann cells through suppressing the Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2020, 533(4): 623-630. |
| [56] | HUANG G T, HU M, LU D H, et al. Protective effect and potential mechanism of Schwann cell-derived exosomes on mechanical damage of rat dorsal root ganglion cells[J]. J Obstet Gynaecol Res, 2021, 47(10): 3691-3701. |
| [57] | CHEN Q Q, ZHANG L, ZHANG F C, et al. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration[J]. J Biol Chem, 2023, 299(12): 105444. |
| [58] | ZHANG Y S, SHEN Y Y, ZHAO L, et al. Transcription factor BCL11A regulates schwann cell behavior during peripheral nerve regeneration[J]. Mol Neurobiol, 2023, 60(9): 5352-5365. |
| [59] | CHEN Q Q, LIU Q Y, ZHANG Y S, et al. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration[J]. Cell Death Dis, 2021, 12(5): 417. |
| [60] | QIAN T M, QIAO P P, LU Y N, et al. Transcription factor SS18L1 regulates the proliferation, migration and differentiation of Schwann cells in peripheral nerve injury[J]. Front Vet Sci, 2022, 9: 936620. |
| [61] | CHEN B, HU R, MIN Q, et al. FGF5 regulates schwann cell migration and adhesion[J]. Front Cell Neurosci, 2020, 14: 237. |
| [62] | CHEN S L, CHEN Q Q, ZHANG X J, et al. Schwann cell-derived amphiregulin enhances nerve regeneration via supporting the proliferation and migration of Schwann cells and the elongation of axons[J]. J Neurochem, 2023, 166(4): 678-691. |
| [63] | BONETTI L V, MALYSZ T, ILHA J, et al. The effects of two different exercise programs on the ultrastructural features of the sciatic nerve and soleus muscle after sciatic crush[J]. Anat Rec, 2017, 300(9): 1654-1661. |
| [64] | SEO T B, OH M J, YOU B G, et al. ERK1/2-mediated Schwann cell proliferation in the regenerating sciatic nerve by treadmill training[J]. J Neurotrauma, 2009, 26(10): 1733-1744. |
| [65] | TEODORI R M, BETINI J, DE OLIVEIRA L S, et al. Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration[J]. Neural Plast, 2011, 2011: 783901. |
| [1] | 刘东慧,次云哲,王春艳,麻雯熠. miR-199a-5p对胶质瘤U251细胞小窝蛋白1表达及细胞迁移和凋亡的影响[J]. 吉林大学学报(医学版), 2025, 51(3): 663-671. |
| [2] | 王繁,温馨,王艺璇,王远. 缝隙连接蛋白β2对肺腺癌患者预后及肺腺癌A549细胞生物学行为的影响[J]. 吉林大学学报(医学版), 2025, 51(3): 716-726. |
| [3] | 金明明,孙然,范明慧,高璐,盛敏佳. 脐带间充质干细胞在女性生殖系统疾病治疗中应用的研究进展[J]. 吉林大学学报(医学版), 2025, 51(3): 839-847. |
| [4] | 王妍,赵邹宇,于盼盼,杨萍. IκB激酶相互作用蛋白在宫颈癌组织中的表达及其对宫颈癌细胞增殖、迁移和侵袭的影响[J]. 吉林大学学报(医学版), 2025, 51(2): 341-351. |
| [5] | 孙淑妍,张华坤,周紫如,李锋,崔晓宾. 食管鳞状细胞癌组织中CRNN蛋白的表达及其过表达对食管鳞状细胞癌Eca9706细胞生物学行为的影响[J]. 吉林大学学报(医学版), 2025, 51(2): 275-283. |
| [6] | 张雅琪,米靖,杨景荣,李欣明,李利. 上调miR-31表达通过Wnt/β-catenin信号通路对牙髓干细胞成骨分化的影响[J]. 吉林大学学报(医学版), 2025, 51(2): 412-419. |
| [7] | 魏秀珍,董亚玲,朱志博,张政杰,谈元郡,白洁,苏夏艺,张百红. 基于胃癌患者术前炎性指标和临床病理特征的胃癌错配修复预测模型的构建[J]. 吉林大学学报(医学版), 2025, 51(1): 172-181. |
| [8] | 杨露,傅家财,李凤金,齐玲. 五味子乙素对胰腺癌细胞迁移和侵袭的抑制作用及其机制[J]. 吉林大学学报(医学版), 2025, 51(1): 44-50. |
| [9] | 赵芳,李珍玲,朴丽花,韩龙哲,崔银姬,权春姬,金雪梅. Yes相关蛋白对人宫颈癌SiHa细胞生物学行为的影响[J]. 吉林大学学报(医学版), 2025, 51(1): 68-75. |
| [10] | 赵蒙蒙,王雅璐,许宇翔,杨凯歌,曹玉文,周文虎,费晶,王雯,罗成华,胡建明. 硫化氢合成酶CBS和CSE对乳腺癌细胞恶性生物学行为的影响[J]. 吉林大学学报(医学版), 2025, 51(1): 34-43. |
| [11] | 王馨,赵杰瑞,郭玉苗,陈姝彤,侯宗昊,张若文. 沉默CD147基因对姜黄素抑制前列腺癌细胞增殖、迁移、侵袭和诱导凋亡的影响[J]. 吉林大学学报(医学版), 2024, 50(6): 1572-1586. |
| [12] | 龙光文,张谦,杨秀林,孙鸿鹏,吉春玲. 抑制miR-193a-5p表达对急性呼吸窘迫综合征大鼠肺纤维化的改善作用及其机制[J]. 吉林大学学报(医学版), 2024, 50(6): 1491-1498. |
| [13] | 石剑虹,田原野,陈楷,孙高,吴国民. 浓缩生长因子联合骨髓间充质干细胞膜片的生物学性能及其在骨缺损修复中的作用[J]. 吉林大学学报(医学版), 2024, 50(6): 1535-1546. |
| [14] | 赵斌,杨金叶,李支尧,毕城伟,杨李波,施致裕,李心,张建朋,施远龙,杨勇,张国颖. miR-30c-5p对前列腺癌细胞增殖、迁移和侵袭的抑制作用及其机制[J]. 吉林大学学报(医学版), 2024, 50(6): 1632-1643. |
| [15] | 宫美恒,陈沫,韩慧,于婷婷. EHD2、miR-let-7c和lncRNA FOXD2-AS1在人喉鳞状细胞癌组织中的表达及其关联性分析[J]. 吉林大学学报(医学版), 2024, 50(5): 1365-1371. |
|
||
