[1] RAMOS-MURGUIALDAY M, CAUBET J, RAMIS J M, et al. Evaluation of the ideal implant insertion time in human bone biopsies after sinus elevation using a combination of autologous bone and graft substitute[J]. Int J Oral Maxillofac Implants, 2015,30(4):891-899. [2] LEE J S, SHIN H K, YUN J H, et al. Randomized clinical trial of maxillary sinus grafting using deproteinized porcine and bovine bone mineral[J]. Clin Implant Dent Relat Res, 2017, 19(1):140-150. [3] LEE J S, CHA J K, KIM C S. Alveolar ridge regeneration of damaged extraction sockets using deproteinized porcine versus bovine bone minerals:A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2018, 20(5):729-737. [4] AKBARZADEH R, YOUSEFI A M. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering[J]. J Biomed Mater Res Part B Appl Biomater, 2014,102(6):1304-1315. [5] HWANG J W, PARK J S, LEE J S, et al. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria[J]. J Biomed Mater Res Part B Appl Biomater, 2012, 100(8):2044-2052. [6] RASPERINI G, PILIPCHUK S P, FLANAGAN C L, et al. 3D-printed bioresorbable scaffold for periodontal repair[J]. J Dent Res,2015, 94(9 Suppl):153S-157S. [7] LUONGO F, MANGANO F G, MACCHI A, et al. Custom-made synthetic scaffolds for bone reconstruction:A retrospective, multicenter clinical study on 15 patients[J]. BioMed Res Int, 2016:5862586. [8] YUAN H P, VAN BLITTERSWIJK C A, DE GROOT K,et al. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds[J]. Tissue Eng, 2006, 12(6):1607-1615. [9] CHEN Y, WANG J, ZHU X D, et al. Enhanced effect of beta-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics:in vitro and in vivo evidence[J]. Acta Biomater, 2015, 11:435-448. [10] PARK J C, OH S Y, LEE J S, et al. In vivo bone formation by human alveolar-bone-derived mesenchymal stem cells obtained during implant osteotomy using biphasic calcium phosphate ceramics or Bio-Oss as carriers[J]. J Biomed Mater Res Part B Appl Biomater, 2016,104(3):515-524. [11] LIM H C, SONG K H, YOU H, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects[J]. J Periodontal Implant Sci, 2015,45(2):46-55. [12] BOULER J M, PILET P, GAUTHIER O, et al. Biphasic calcium phosphate ceramics for bone reconstruction:A review of biological response[J].Acta Biomater, 2017,53:1-12. [13] OLTON D, LI J H, WILSON M E, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery:influence of the synthesis parameters on transfection efficiency[J]. Biomaterials, 2007, 28(6):1267-1279. [14] SHI H, MA J, ZHAO N, et al. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs[J]. J Mater Sci Mater Med,2008, 19(12):3515-3524. [15] WANG L L, SHI H, CHEN Y J, et al. Healing of acute alveolar bone dehiscence following treatment with porous biphasic calcium phosphate in beagle dogs[J].Clin Oral Investig,2011, 15(6):983-991. [16] 杨小荣,刘芳,汪芳,等.Masson染色法在周围神经损伤中的应用[J].诊断病理学杂志, 2012, 19(6):473-474. [17] 于斐,雷鸣,曾晖,等.特殊染色技术在骨关节炎关节软骨形态学研究中的比较[J].中国矫形外科杂志, 2015, 23(19):1801-1807. [18] KOMORI T, YAGI H, NOMURA S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts[J].Cell, 1997, 89(5):755-764. [19] YAMAGUCHI A, KOMORI T, SUDA T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1[J]. Endocr Rev,2000, 21(4):393-411. [20] JIMÉNEZ M JG, BALBÍN M, ALVAREZ J, et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation[J]. J Cell Biol, 2001, 155(7):1333-1344. [21] DUCY P, STARBUCK M, PRIEMEL M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development[J]. Genes Dev,1999, 13(8):1025-1036. [22] KAWARIZADEH A, BOURAUEL C, GÖTZ W, et al. Early responses of periodontal ligament cells to mechanical stimulus in vivo[J]. J Dent Res, 2005, 84(10):902-906. [23] 时函,陈远萍,史瑞新,等.核心结合因子α1与正畸牙移动中牙槽骨改建的相关性研究[J].上海口腔医学, 2007, 16(5):507-511. [24] GAO Y H, SHINKI T, YUASA T, et al. Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis:regulation of mRNA expression of osteoclast differentiation factor (ODF)[J]. Biochem Biophys Res Commun,1998, 252(3):697-702. |