1 |
王宗青,刘向玲,穆雅林.谷氨酸受体及其在弱视方面研究进展[J].国际眼科杂志,2010,10(5):915-917.
|
2 |
项宗勤. 抑制非NMDA离子型谷氨酸受体减缓rd10小鼠视网膜退变进程[D].广州:暨南大学,2017.
|
3 |
LI D K,ZHANG C, GU Y, et al. The spatial-temporal interaction in the LTP induction between layer Ⅳ to layer Ⅱ/Ⅲ and layer Ⅱ/Ⅲ to layer Ⅱ/Ⅲ connections in rats’visual cortex during the development[J].Neuroscience,2017,350:39-53.
|
4 |
王 星,邹云春,严丽英. 弱视发病机制相关的研究进展[J]. 中华眼科医学杂志(电子版), 2017,7(5):234-240.
|
5 |
PERFILOVA V N, TYURENKOV I N. Glutamate metabotropic receptors: structure, localisation, functions[J].Usp Fiziol Nauk,2016,47(2):98-112.
|
6 |
张 锐.Ⅰ组代谢型谷氨酸受体在单眼形觉剥夺大鼠视皮层突触传递效能中的作用[D].新乡:新乡医学院,2016.
|
7 |
MOUSTAINE D EI, GRANIER S, DOUMAZANE E, et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling[J]. Proc Natl Acad Sci U S A,2012,109(40):226-242.
|
8 |
WANG H, TAN S, ZHAO L, et al. Protective role of NMDAR for microwave-induced synaptic plasticity injuries in primary hippocampal neurons[J].Cell Physiol Biochem,2018,51(1):97-112.
|
9 |
PHILPOT B D, ZUKIN R S. Synapse-specific metaplasticity: to be silenced is not to silence 2B[J].Neuron, 2010,66(6):814-816.
|
10 |
DOTIGNY F, AMOR A Y BEN, BURKE M, et al. Neuromodulatory role of acetylcholine in visually-induced cortical activation: Behavioral and neuroanatomical correlates[J].Neuroscience,2008,154(4):1607-1618.
|
11 |
LALO U, ANDREW J, PALYGIN O, et al. Ca2+ dependent modulation of GABAA and NMDA receptors by extracellular ATP: implication for function of tripartite synapse [J]. Biochem Soc Trans,2009,37(Pt6):1407-1411.
|
12 |
李侲宇,谢剑萍,钱益勇,等. 猫视皮层N-甲基-D-天门冬氨酸受体的基因表达[J]. 解剖学研究,2002,24(1):40-42.
|
13 |
NAGAYACH A,SINGH A,GELLER A I. Efficient gene transfers into neocortical neurons connected by NMDA NR1-containing synapses [J].Neurosci Methods,2019,327:108390.
|
14 |
阴正勤,邓泽明,陈 莉,等.N-甲基-D-天门冬氨酸-R1不同mRNA构型在斜视性弱视猫视皮层的表达[J].中华眼底病杂志,2000,16(2):51-53.
|
15 |
LUNDBYE C J, TOFT A K H, BANKE T G. Inhibition of GluN2A NMDA receptors ameliorates synaptic plasticity deficits in the Fmr1 mouse model [J].J Physiol, 2018, 596(20):5017-5031.
|
16 |
DI M V,VENTRIGLIA F, SANTILLO S. AMPA/NMDA cooperativity and integration during a single synaptic event [J].J Comput Neurosci, 2016,41(2):127-142.
|
17 |
LI Y H, WANG J. Membrane insertion of new AMPA receptors and LTP induced by glycine is prevented by blocking NR2A-containing NMDA receptors in the rat visual cortex in vitro[J].Curr Neurovasc Res, 2013,10(1):70-75.
|
18 |
FOSTER A C, RANGEL-DIAZ N, STAUBLI U, et al. Phenylglycine analogs are inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 and enhance NMDA receptor-mediated LTP in rat visual cortex slices [J].Neuropharmacology, 2017, 126:70-83.
|
19 |
LAH M H C, REZA F, BEGUM T, et al. Role of pre-synaptic NMDA receptors in the modulation of inhibitory synaptic transmission in sensory-motor and visual cortical pyramidal neurons in brain slices of young epileptic mice [J].Malays J Med Sci, 2018,25(3):27-39.
|
20 |
PENN A C, ZHANG C L, GEORGES F, et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors [J].Nature, 2017, 549(7672): 384-388.
|
21 |
ABRAHAMSSON T, GUSTAFSSON B, HANSE E. AMPA silencing is a prerequisite for developmental long-term potentiation in the hippocampal CA1 region[J]. J Neurophysiol,2008,100(5):2605-2614.
|
22 |
PEN Y, BOROVOK N, REICHENSTEIN M, et al. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post-synaptic AMPA receptor level [J].Hippocampus,2016,26(9):1149-1167.
|
23 |
SANDERSON J L,GORSKI J A, DELL’ACQUC M L.NMDA receptor-dependent LTD requires transient synaptic incorporation of Ca2+-permeable AMPARs mediated by AKAP150-anchored PKA and calcineurin [J]. Neuron, 2016,89(5):1000-1015.
|
24 |
WEON H, KIM T W, YOUN D H. Postsynaptic N-type or P/Q-type calcium channels mediate long-term potentiation by group Ⅰ metabotropic glutamate receptors in the trigeminal oralis [J]. Life Sci,2017,188:110-117.
|
25 |
YOUN D H.Differential roles of signal transduction mechanisms in long-term potentiation of excitatory synaptic transmission induced by activation of group I mGluRs in the spinal trigeminal subnucleus oralis [J].Brain Res Bull, 2014,108: 37-43.
|
26 |
FUJII S, YAMAZAKI Y, GOTO J, et al. Prior activation of inositol 1,4,5-trisphosphate receptors suppresses the subsequent induction of long-term potentiation in hippocampal CA1 neurons [J].Learn Mem, 2016,23(5):208-220.
|
27 |
COLMERS P L W, BAINS J S. Presynaptic mGluRs control the duration of endocannabinoid-mediated DSI [J]. J Neurosci,2018,38(49):10444-10453.
|
28 |
JANTAS D, GRĘDA A, GOŁDA S, et al. The neuroprotective effects of orthosteric agonists of group Ⅱ and Ⅲ mGluRs in primary neuronal cell cultures are dependent on developmental stage [J].Neuropharmacology, 2016,111:195-211.
|
29 |
SHARMA R, GULIA R, BHATTACHARYYA S. Analysis of ubiquitination and ligand-dependent trafficking of group Ⅰ mGluRs [J].Methods Cell Biol, 2019, 149:107-130.
|
30 |
DUNN H A, ZUCCA S, DAO M, et al. ELFN2 is a postsynaptic cell adhesion molecule with essential roles in controlling group Ⅲ mGluRs in the brain and neuropsychiatric behavior [J].Mol Psychiatry,2019,24(12):1902-1919.
|
31 |
WALLIS J L, IRVINE M W, JANE D E, et al. An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo [J].Hippocampus, 2015,25(11):1407-1417.
|
32 |
WANG X H, MARKS C R, PERFITT T L, et al. A novel mechanism for Ca2+/calmodulin-dependent protein kinase Ⅱ targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus[J]. J Biol Chem, 2017,292(42): 17324-17336.
|
33 |
JONG Y J, SERGIN I, PURGERT C A, et al. Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5[J]. Mol Pharmacol,2014,86(6):774-785.
|
34 |
LOEBRICH S, DJUKIC B, TONG Z J, et al. Regulation of glutamate receptor internalization by the spine cytoskeleton is mediated by its PKA-dependent association with CPG2 [J]. Proc Natl Acad Sci U S A,2013,110(47):E4548-4556.
|
35 |
PARK P, SANDERSON T M, AMICI M, et al. Calcium-permeable AMPA receptors mediate the induction of the protein kinase A-dependent component of long-term potentiation in the hippocampus[J]. J Neurosci,2016,36(2):622-631.
|
36 |
NAKANISHI A, HATANO N, FUJIWARA Y, et al. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca2+/calmodulin (CaM) dependence of Ca2+/CaM-dependent protein kinase kinase B [J].J Biol Chem, 2017,292(48): 19804-19813.
|
37 |
TAKABATAKE S, OHTSUKA S, SUGAWARA T, et al. Regulation of Ca2+/calmodulin-dependent protein kinase kinase B by cAMP signaling[J] .Biochim Biophys Acta Gen Subj,2019,1863(4):672-680.
|
38 |
UNO K, MIYAZAKI T, SODEYAMA K, et al.Methamphetamine induces Shati/Nat8L expression in the mouse nucleus accumbens via CREB-and dopamine D1 receptor-dependent mechanism [J].PLoS One, 2017,12(3):e1074196.
|
39 |
RAN I, LAPLANTE I, LACAILLE J C.CREB-dependent transcriptional control and quantal changes in persistent long-term potentiation in hippocampal interneurons[J]. J Neurosci, 2012, 32(18): 6335-6350.
|
40 |
YI J H, PARK H J, BEAK S J. Danggui-Jakyak-San enhances hippocampal long-term potentiation through the ERK/CREB/BDNF cascade [J].J Ethnopharmacol, 2015,175:481-489.
|
41 |
DAUMAS S, HUNTER C J, MISTRY R B, et al. The kinase function of MSK1 regulates BDNF signaling to CREB and basal synaptic transmission, but is not required for hippocampal long-term potentiation or spatial memory [J]. eNeuro, 2017.DOI:10.1523/eneuro.0212-16.2017.
doi: 10.1523/eneuro.0212-16.2017
|
42 |
FUMAGALLI F, CAFFINO L, VOGT M A, et al. AMPA GluR-A receptor subunit mediates hippocampal responsiveness in mice exposed to stress [J].Hippocampus, 2011,21(9):1028-1035.
|
43 |
MABB A M, EHLERS M D.Arc ubiquitination in synaptic plasticity[J].Semin Cell Dev Biol,2018,77:10-16.
|