吉林大学学报(医学版)

• 基础研究 • 上一篇    下一篇

应用PCA方法分析拉曼光谱检测结果对乳腺良恶性疾病鉴别诊断的价值

张海鹏1,付彤2,张志茹2,范志民2,郑超2,韩冰2   

  1. 1.吉林大学第一医院产科,吉林 长春 130021;2.吉林大学第一医院乳腺外科,吉林 长春 130021
  • 收稿日期:2013-05-03 出版日期:2013-09-28 发布日期:2013-12-13
  • 通讯作者: 韩冰(Tel:0431-88782550,E-mail:yintian77@126.com) E-mail:yintian77@126.com
  • 作者简介:张海鹏(1980-),女,吉林省长春市人,主治医师,在读医学博士,主要从事生物拉曼光谱的研究。
  • 基金资助:

    国家自然科学基金青年基金资助课题(81202078);吉林省科技厅科技发展计划青年基金资助课题(20130522030JH);吉林省科技厅科研基金资助课题(201015155)

Value of principal component analysis in Raman spectroscopy detection results for differential diagnosis of breast diseases

ZHANG Hai-peng1,FU Tong2,ZHANG Zhi-ru2,FAN Zhi-min2,ZHENG Chao2,HAN Bing2   

  1. 1.Department of Obstetrics Surgery,First Hospital,Jilin University,Changchun 130021,China;2.Department of Breast Surgery,First Hospital,Jilin University,Changchun 130021,China
  • Received:2013-05-03 Online:2013-09-28 Published:2013-12-13

摘要:

[摘 要]目的:探讨便携式拉曼光谱在检测新鲜乳腺病灶、正常乳腺组织中应用价值,阐明主成分分析(PCA)方法在处理拉曼光谱检测结果、构建乳腺病变鉴别数学模型和鉴别病变性质中的应用价值。方法:收集2011年5月—2012年5月吉林大学第一医院乳腺外科手术的168例患者(乳腺癌及乳腺良性病变)的新鲜乳腺组织,患者均为女性,年龄22~75岁。其中51例正常组织、66例良性病变组织和51例恶性病变组织,应用便携式拉曼光谱仪进行检测,得出光谱结果;采用PCA方法处理数据,构建病灶鉴别模型,马氏距离法判别数据处理方法的优劣。结果:检测乳腺组织及病灶标本共得到1 800个拉曼光谱,正常组织的特征峰出现在1 078、1 267、1 301、1 440、1 654和1 746 cm-1,而良性和恶性病变组织的特征峰出现在1 281、1 341、1 381、1 417、1 465、1 530和1 637 cm-1,良性和恶性病变组织的主要不同则集中在1 340和1 480 cm-1。PCA方法判别正常组织、良性和恶性病变组织标本的正确率分别是80%、56%和85%。结论:便携式拉曼光谱仪能够检测乳腺组织和病灶,正常组织、良性与恶性病变组织拉曼光谱结果均存在显著差异,PCA方法可以用来构建鉴别模型,但在鉴别良性病变时准确性还不理想。

关键词: 乳腺肿瘤, 拉曼光谱, 主成分分析, 模型构建

Abstract:

Abstract:Objective To explore the application value of  portable Raman spectroscopy  in fresh breast lesions and normal breast tissues, and to clarify the application value of  principal component analysis (PCA) method in Raman spectrascopy detetion results, construction of  the mathematical model  and differential diagnosis.Methods The fresh tissues of 168 patients (all female,aged 22-75 years) were obtained by routine surgical resection from Department of Breast Surgery,the First Hospital of Jilin University.51 normal tissues,66 benign and 51 malignant breast lesions were detected by Raman spectroscopy.The PCA algorithm was used to process the data and build the mathematical model.Mahalanobis distance and spectral residuals were used as discriminating criteria for evaluating this method.Results 1 800 Raman spectra were acquired from fresh samples of human breast tissues.Based on spectral profiles,the presence of 1 078,1 267,1 301,1 440,1 654,and 1 746 cm-1 were indicated in normal tissues.And 1 281,1 341,1 381,1 417,1 465,1 530,and 1 637 cm-1 were found in benign and malignant tissues.The main differences of benign and malignant were the characteristic peaks of 1 340 and 1 480 cm-1.The accuracies of PCA were 80%,56%,and 85% in discriminating normal,benign and malignant tissues.Conclusion Portable Raman spectra can detect the breast tissues and lesions.The Raman spectra of normal,benign and malignant breast tissues have significant differences.PCA method can be used to build identification model,but there is still insufficient in distinguishing benign lesion tissues.

Key words: breast neoplasms, Raman spectroscopy, principal component analysis, model construction

中图分类号: 

  • R730.4