[1] 严晓慧,华克勤,冯炜炜. 肿瘤休眠与血管新生[J].国际肿瘤学杂志,2010, 37(5):335-338.[2] Valente M, Furian L, Rigotti P. Organ donors with small renal cancer:report of 3 cases[J]. Transplant Proc,2012, 44(7):1846-1847.[3] Blatter S, Rottenberg S. Minimal residual disease in cancer therapy——Small things make all the difference[J]. Drug Resist Updat, 2015, 21-22:1-10.doi:10.1016/j.drup.2015.08.003.[4] Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance[J]. Adv Cancer Res, 2001, 83(83):117-158.DOI:10.1016/S0065-230X(01)83005-0.[5] Romero I, Garrido C, Algarra I, et al. T lymphocytes restrain spontaneous metastases in permanent dormancy[J]. Cancer Res, 2014, 74(7):1958-1968.[6] Garrido C, Paco L, Romero I, et al. MHC class Ⅰ molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells[J]. Carcinogenesis, 2012, 33(3):687-693.[7] Romero I, Martinez M, Garrido C, et al. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells[J]. J Pathol, 2012, 227(3):367-379.[8] Milo I, Sapoznikov A, Kalchenko V, et al. Dynamic imaging reveals promiscuous cross presentation of blood-borne antigens to naive CD8+ T cells in the bone marrow[J]. Blood, 2013, 122(2):193-208.[9] Schirrmacher V. Cancer-reactive memory T cells from bone marrow:Spontaneous induction and therapeutic potential[J]. Int J Oncol, 2015, 47(6):2005-2016.[10] Okhrimenko A, Grün JR, Westendorf K, et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory[J]. Proc Natl Acad Sci USA, 2014, 111(25):9229-9234.[11] Stefanovic S, Schuetz F, Sohn C, et al. Adoptive immunotherapy of metastatic breast cancer:present and future[J]. Cancer Metastasis Rev, 2014, 33(1):309-320.[12] Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment[J]. Cancer Res, 2012, 72(13):3125-3130.[13] Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase Ⅰ-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes[J]. Cancer Res, 2009, 69(4):1553-1560.[14] Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice[J]. J Immunol, 2008, 181(8):5791-5802.[15] Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine[J]. Cancer Res, 2010, 70(1):68-77.[16] Almog N. Genes and regulatory pathways involved in persistence of dormant micro-tumors[J]. Adv Exp Med Biol, 2013(734):3-17.[17] Almog N. Molecular mechanisms underlying tumor dormancy[J]. Cancer Lett, 2010, 294(2):139-146.[18] Folkman J. Angiogenesis[J]. Annu Rev Med, 2006, 57:1-18.[19] Davis NM, Sokolosky M, Stadelman K, et al. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer:possibilities for therapeutic intervention[J]. Oncotarget, 2014, 5(13):4603-4650.[20] Lopez-Knowles E, O'Toole SA, McNeil CM, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality[J]. Int J Cancer, 2010, 126(5):1121-1131.[21] Saini KS, Loi S, de Azambuja E, et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer[J]. Cancer Treat Rev, 2013, 39(8):935-946.[22] Indraccolo S, Minuzzo S, Masiero M, et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy[J]. Cancer Res, 2009, 69(4):1314-1323.[23] Shaked Y, McAllister S, Fainaru O, et al. Tumor dormancy and the angiogenic switch:possible implications of bone marrow-derived cells[J]. Curr Pharm Des, 2014, 20(30):4920-4933.[24] Versteeg HH. Tissue factor:old and new links with cancer biology[J]. Semin Thromb Hemost, 2015, 41(7):747-755.[25] Magnus N, Garnier D, Meehan B, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations[J]. Proc Natl Acad Sci U S A, 2014, 111(9):3544-3549.[26] Findlay VJ, Wang C, Watson DK, et al. Epithelial-to-mesenchymal transition and the cancer stem cell phenotype:insights from cancer biology with therapeutic implications for colorectal cancer[J]. Cancer Gene Ther, 2014, 21(5):181-187.[27] Ruppender NS, Morrissey C, Lange PH, et al. Dormancy in solid tumors:implications for prostate cancer[J]. Cancer Metastasis Rev, 2013, 32(3/4):501-509.[28] Bambang IF, Lu D, Li H, et al. Cytokeratin 19 regulates endoplasmic reticulum stress and inhibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells[J]. Exp Cell Res, 2009, 315(11):1964-1974.[29] Allgayer H, Aguirre-Ghiso JA. The urokinase receptor (u-PAR)-a link between tumor cell dormancy and minimal residual disease in bone marrow[J]. APMIS, 2008, 116(7/8):602-614.[30] Ameri K, Rajah AM, Nguyen V, et al. Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress[J]. PLoS One, 2013, 8(4):1-11.[31] Ochiai D, Goda N, Hishiki T, et al. Disruption of HIF-1α in hepatocytes impairs glucose metabolism in diet-induced obesity mice[J]. Biochem Biophys Res Commun, 2011, 415(3):445-449.[32] Ameri K, Jahangiri A, Rajah AM, et al. HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell Survival and Tumor Growth[J]. Cell Rep, 2015,10(6):891-899.[33] Barkan D, El Touny LH, Michalowski AM, et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment[J]. Cancer Res, 2010, 70(14):5706-5716. |