[1] Raciti GA,Nigro C,Longo M,et al. Personalized medicine and type 2 diabetes:lesson from epigenetics[J]. Epigenomics,2014,6(2):229-238. [2] 燕艳,刘仲祥,张秀娟.表观遗传学在糖尿病及其慢性并发症中的应用[J].中国实验诊断学,2017,21(9):1669-1671. [3] Rorbach-Dolata A,Kubis A,Piwowar A.Epigenetic modifications:An important mechanism in diabetic disturbances[J].Postepy Hig Med Dosw (Online),2017,71:960-974. [4] Bansal A,Pinney SE.DNA methylation and its role in the pathogenesis of diabetes[J].Pediatr Diabetes,2017,18(3):167-177. [5] Wicklow BA,Sellers EA.Maternal health issues and cardio-metabolic outcomes in the offspring:a focus on Indigenous populations[J].Best Pract Res Clin Obstet Gynaecol,2015,29(1):43-53. [6] Ponnaluri VK,Ehrlich KC,Zhang G,et al.Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue specific gene expression[J].Epigenetics,2017,12(2):123-138. [7] Jirtle RL,Skinner MK.Environmental epigenomics and disease susceptibility[J].Nat Rev Genet,2007,8(4):253-262. [8] Toperoff G,Kark JD,Aran D,et al.Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence[J].Clin Epigenetics,2015,7(1):35. [9] VanderJagt TA,Neugebauer MH,Morgan M,et al.Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy[J].World J Diabetes,2015,6(9):1113-1121. [10] Barres R,Zierath JR.The role of diet and exercise in the transgenerational epigenetic landscape of T2DM[J].Nat Rev Endocrinol,2016,12(8):441-451. [11] Zhang J,Wang C,Ha X,et al.DNA methylation of tumor necrosis factor-α,monocyte chemoattractant protein-1,and adiponectin genes in visceral adipose tissue is related to type 2 diabetes in the Xinjiang Uygur population[J].J Diabetes,2017,9(7):699-706. [12] Rönn T,Ling C.DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes[J].Epigenomics,2015,7(3):451-460. [13] Babu M,Durga Devi T,Makinen P,et al.Differential promoter methylation of macrophage genes is associated with impaired vascular growth in ischemic muscles of hyper-lipidemic and type 2 diabetic mice:a genome-wide promoter methylation study[J].Circ Res,2015,117(3):289-299. [14] Mudry JM,Lassiter DG,Nylén C,et al.Insulin and glucose alter death-associated protein kinase 3(DAPK3) DNA methylation in human skeletal muscle[J].Diabetes,2017,66(3):651-662. [15] Simar D,Versteyhe S,Donkin I,et al.DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human[J].Metab Clin Exp,2014,63(9):1188-1197. [16] Zhao J,Goldberg J,Bremner JD,et al.Global DNA methylation is associated with insulin resistance:a monozygotic twin study[J].Diabetes,2012,61(2):542-546. [17] Yang BT,Dayeh TA,Kirkpatrick CL,et al.Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets[J].Diabetologia,2011,54(2):360-367. [18] Kuroda A,Rauch TA,Todorov I,et al.Insulin gene expression is regulated by DNA methylation[J].PLoS One,2009,4(9):e6953. [19] Yang BT,Dayeh TA,Volkov PA,et al.Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes[J].Mol Endocrinol,2012,26(7):1203-1212. [20] Dayeh T,Volkov P,Salö S,et al.Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion[J].PLoS Genet,2014,10(3):e1004160. [21] Ling C,Del Guerra S,Lupi R,et al.Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion[J].Diabetologia,2008,51(4):615-622. [22] Hall E,Volkov P,Dayeh T,et al.Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets[J].BMC Med,2014,12:103. [23] Gillberg L,Ling C.The potential use of DNA methylation biomarkers to identify risk and progression of type 2 diabetes[J].Front Endocrinol (Lausanne),2015,6:43. [24] Lindholm ME,Marabita F,Gomez-Cabrero D,et al.An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training[J].Epigenetics,2014,9(12):1557-1569. [25] Sims RJ 3rd,Reinberg D.Is there a code embedded in proteins that is based on post-translationalmodifications?[J].Nat Rev Mol Cell Biol,2008,9(10):815-820. [26] Berger SL.The complex language of chromatin regulation during transcription[J].Nature,2007,447(7143):407-412. [27] Ahmed M,de Winther MPJ,Van den Bossche J.Epigenetic mechanisms of macrophage activation in type 2 diabetes[J].Immunobiology,2017,222(10):937-943. [28] Zimmet P,Alberti KG,Shaw J.Global and societal implications of the diabetes epidemic[J].Nature,2001,414(6865):782-787. [29] Kawada Y,Asahara SI,Sugiura Y,et al.Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells[J].PLoS One,2017,12(9):e0184435. [30] Daneshpajooh M,Bacos K,Bysani M,et al.HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells[J].Diabetologia,2017,60(1):116-125. [31] Jenuwein T.The epigenetic magic of histone lysine methylation[J].FEBS J,2006,273(14):3121-3135. [32] Marmorstein R,Trievel RC.Histone modifying enzymes:structures,mechanisms,and specificities[J].Biochim Biophys Acta,2009,1789(1):58-68. [33] Watson M,Chow S,Barsyte D,et al.The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytometry[J].Cytometry A,2014,85(1):78-87. [34] Du J,Johnson LM,Jacobsen SE,et al.DNA methylation pathways and their crosstalk with histone methylation[J].Nat Rev Mol Cell Biol,2015,16(9):519-532. [35] Reddy MA,Natarajan R.Epigenetic mechanisms in diabetic vascular complications[J].Cardiovasc Res,2011,90(3):421-429. [36] Miao F,Chen Z,Zhang L,et al.Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes[J].J Biol Chem,2012,287(20):16335-16345. [37] Greiβel A,Culmes M,Napieralski R,et al.Alternation of histone and DNA methylation in human atherosclerotic carotid plaques[J].Thromb Haemost,2015,114(2):390-402. [38] Miao F,Gonzalo IG,Lanting L,et al.In vivochromatin remodeling events leading to inflammatory gene transcription under diabetic conditions[J].J Biol Chem,2004,279(17):18091-18097. [39] Reddy MA,Zhang E,Natarajan R.Epigenetic mechanisms in diabetic complications and metabolic memory[J].Diabetologia,2015,58(3):443-455. [40] Guo XR,Wang XL,Li MC,et al.PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro [J].Clin Exp Med,2015,15(4):501-509. [41] Avrahami D,Kaestner KH.Epigenetic regulation of pancreas development and function[J].Semi Cell Develop Biol,2012,23(6):213-223. [42] Chen H,Gu X,Su IH,et al.Polycomb protein Ezh2 regulates islets pancreatic beta-cell in diabetes mellitus[J].Genes Dev,2009,23(8):975-985. [43] Chakrabarti SK,Francis J,Ziesmann SM,et al.Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells[J].J Biol Chem,2003,278(26):23617-23623. [44] Francis J,Chakrabarti SK,Garmey JC,et al.Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase Ⅱ elongation during activation of insulin transcription[J].J Biol Chem,2005,280(43):36244-36253. [45] Zhang J.The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation[J].J Biol Chem,2007,282(47):34356-34364. [46] Rausa FM 3rd,Hughes DE,Costa RH.Stability of the hepatocyte nuclear factor 6 transcription factor requires acetylation by the CREB-binding protein coactivator[J].J Biol Chem,2004,279(41):43070-43076. [47] Kumar S,Pamulapati H,Tikoo K.Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3[J].Mol Cell Endocrinol,2016,422:233-242. [48] Gupta J,Kumar S,Li J,et al.Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1):distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells[J].Biochimie,2012,94(12):2656-2664. |