吉林大学学报(医学版) ›› 2021, Vol. 47 ›› Issue (1): 222-228.doi: 10.13481/j.1671-587x.20210131
收稿日期:
2020-04-29
出版日期:
2021-01-28
发布日期:
2021-01-27
通讯作者:
刘敏
E-mail:liu_min99@jlu.edu.cn
作者简介:
刘旭旭(1994-),女,山东省滨州市人,在读硕士研究生,主要从事牙周疾病和种植体周围疾病方面的研究
基金资助:
Received:
2020-04-29
Online:
2021-01-28
Published:
2021-01-27
摘要:
抗菌光动力治疗(aPDT)是一种新型的抑制牙周病原菌的方法,其作用机制为光敏剂与目标细菌结合,在氧存在的情况下被适当波长的光激活,产生活性氧。活性氧诱导一系列光化学和生物学反应,造成细菌的不可逆损伤,达到治疗的目的。牙周炎是由菌斑微生物引起的牙周支持组织的慢性炎症,常引起牙槽骨的病理性吸收,是导致成年人失牙的主要原因。由于目前牙周炎的治疗手段如洁治术和刮治术尚无法完全清除菌斑微生物,且抗生素滥用导致部分细菌存在产生耐药性的风险,因此迫切需要一种能够有效灭活病原微生物而不会产生耐药性的抗菌方法。近年来大量学者对aPDT的作用机制、不同类型的光源和光敏剂的优缺点及aPDT治疗牙周炎的效果等进行了大量研究。现对aPDT的作用机制和应用于牙周炎治疗的体内外研究现状及最新的研究进展进行综述,旨在为其在临床中的应用提供参考。
中图分类号:
刘旭旭,舒萌萌,王瑞凤,刘敏. 抗菌光动力治疗的作用机制及其在牙周炎治疗中应用的研究进展Research progress in mechanism of antibacterial photodynamic therapy and its application in treatment of periodontitis[J]. 吉林大学学报(医学版), 2021, 47(1): 222-228.
1 | CIEPLIK F, DENG D M, CRIELAARD W, et al. Antimicrobial photodynamic therapy-what we know and what we don’t [J]. Crit Rev Microbiol, 2018,44(5):571-589. |
2 | WAINWRIGHT M. Dyes, flies, and sunny skies: photodynamic therapy and neglected tropical diseases [J]. Colo Technol, 2017, 133(1):3-14. |
3 | 刘明军, 宋 莉, 邹海啸,等. 光动力抗菌疗法治疗牙周炎的研究进展 [J]. 中国激光医学杂志, 2017,26(4):210-215. |
4 | WAINWRIGHT M, MAISCH T, NONELL S, et al. Photoantimicrobials-are we afraid of the light? [J]. Lancet Infect Dis, 2017, 17(2):e49-e55. |
5 | BAPTISTA M S, CADET J, DI MASCIO P, et al. Type Ⅰand type Ⅱ photosensitized oxidation reactions: guidelines and mechanistic pathways [J]. Photochem Photobiol, 2017, 93(4):912-919. |
6 | ABRAHAMSE H, HAMBLIN M R. New photosensitizers for photodynamic therapy [J]. Biochem J, 2016, 473(4):347-364. |
7 | GOLLMER A, FELGENTRAEGER A, MAISCH T, et al. Real‐time imaging of photodynamic action in bacteria [J]. J Biophotonics, 2017, 10(2):264-270. |
8 | GONÇALVES M L L, MOTA A C C DA, DEANA A M,et al. Photodynamic therapy with bixa orellana extract and LED for the reduction of halitosis: study protocol for a randomized, microbiological and clinical trial[J]. Trials, 2018, 19(1):590. |
9 | REIS A C M, REGIS W F M, RODRIGUES L K A. Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria[J]. Photodiagnosis Photodyn Ther, 2019, 26:179-189. |
10 | DINIZ I M, HORTA I D, AZEVEDO C S, et al. Antimicrobial photodynamic therapy: A promise candidate for caries lesions treatment [J]. Photodiagnosis Photodyn Ther, 2015, 12(3):511-518. |
11 | LONGO M,GOUVEIA GARCIA V, ERVOLINO E, et al. Multiple aPDT sessions on periodontitis in rats treated with chemotherapy: histomorphometrical, immunohistochemical, immunological and microbiological analyses [J]. Photodiagnosis Photodyn Ther, 2019, 25:92-102. |
12 | ALVES E, FAUSTINO M A, NEVES M G, et al. An insight on bacterial cellular targets of photodynamic inactivation [J]. Future Med Chem, 2014,6(2):141-164. |
13 | PUMMER A, KNÜTTEL H, HILLER K A, et al. Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review [J]. Future Med Chem, 2017, 9(13):1557-1574. |
14 | TEOW S Y, LIEW K, ALI S A, et al. Antibacterial action of curcumin against Staphylococcus aureus: A brief review [J]. J Trop Med, 2016, 2016:2853045. |
15 | SLOTS J. Periodontitis: facts, fallacies and the future [J]. Periodontol 2000, 2017, 75(1):7-23. |
16 | 许立硕,黄 玉,金 权,等.野菊花骨碎补复合中药制剂联合奥硝唑治疗慢性牙周炎的效果评价 [J].吉林大学学报(医学版),2019,45(5):1128-1133. |
17 | FERES M, FIGUEIREDO L C, SOARES G M S, et al. Systemic antibiotics in the treatment of periodontitis[J]. Periodontol 2000, 2015, 67(1):131-186. |
18 | JEPSEN K, JEPSEN S. Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis [J]. Periodontol 2000, 2016, 71(1):82-112. |
19 | PÉREZ-LAGUNA V, GARCÍA-MALINIS A J, ASPIROZ C, et al. Antimicrobial effects of photodynamic therapy [J]. G Ital Dermatol Venereol, 2018, 153(6):833-846. |
20 | Santos D A, CRUGEIRA P J L, NUNES I P F, et al. A novel technique of antimicrobial photodynamic therapy-aPDT using 1,9-dimethyl-methylene blue zinc chloride double salt-DMMB and polarized light on Staphylococcus aureus [J]. J Photochem Photobiol B, 2019, 200:111646. |
21 | GOLLMER A, FELGENTRÄGER A, BÄUMLER W, et al. A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling-a structure-response study [J]. Photochem Photobiol Sci, 2015, 14(2):335-351. |
22 | KLEPAC-CERAJ V, PATEL N, SONG X Q, et al. Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria [J]. Lasers Surg Med, 2011, 43(7):600-606. |
23 | TOSATO M G, SCHILARDI P, LORENZO DE MELE M F, et al. Synergistic effect of carboxypterin and methylene blue applied to antimicrobial photodynamic therapy against mature biofilm of Klebsiella pneumoniae [J]. Heliyon, 2020,6(3): e03522. |
24 | YOSHIDA A, SASAKI H, TOYAMA T, et al. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment [J]. Sci Rep, 2017, 7(1):5225. |
25 | CIEPLIK F, SPÄTH A, LEIBL C, et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers [J]. Clin Oral Investig, 2014, 18(7):1763-1769. |
26 | MANG T, ROGERS S, KEINAN D, et al. Antimicrobial photodynamic therapy (aPDT) induction of biofilm matrix architectural and bioadhesive modifications[J]. Photodiagnosis Photodyn Ther, 2016, 13:22-28. |
27 | CARRERA E T, DIAS H B, CORBI S C T, et al. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review [J]. Laser Phys, 2016, 26(12):123001. |
28 | FYRESTAM J, BJURSHAMMAR N, PAULSSON E, et al. Influence of culture conditions on porphyrin production in aggregatibacter actinomycetemcomitans and porphyromonas gingivalis [J]. Photodiagnosis Photodyn Ther, 2017, 17:115-123. |
29 | LEITE D P, PAOLILLO F R, Parmesano T N, et al. Effects of photodynamic therapy with blue light and curcumin as mouth rinse for oral disinfection: a randomized controlled trial [J]. Photomed Laser Surg, 2014, 32(11):627-632. |
30 | BERND A. Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin [J]. Phytochem Rev, 2014, 13:183-189. |
31 | SUN X L, WANG L, LYNCH C D, et al. Nanoparticles having amphiphilic silane containing chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens [J]. J Dent, 2019, 81:70-84. |
32 | BETSY J, PRASANTH C S, BAIJU K V, et al. Efficacy of antimicrobial photodynamic therapy in the management of chronic periodontitis: a randomized controlled clinical trial [J]. J Clin Periodontol, 2014, 41: 573-581. |
33 | CHITSAZI M T, SHIRMOHAMMADI A, POURABBAS R, et al. Clinical and microbiological effects of photodynamic therapy associated with non-surgical treatment in aggressive periodontitis [J]. J Dent Res Dent Clin Dent Prospects, 2014, 8(3):153-159. |
34 | MOREIRA A L, NOVAES A B JR, GRISI M F, et al. Antimicrobial photodynamic therapy as an adjunct to non-surgical treatment of aggressive periodontitis:a split-mouth randomized controlled trial [J]. J Periodontol, 2015, 86(3):376-386. |
35 | SIVARAMAKRISHNAN G, SRIDHARAN K. Photodynamic therapy for the treatment of peri-implant diseases: A network meta-analysis of randomized controlled trials [J]. Photodiagnosis Photodyn Ther, 2018, 21:1-9. |
36 | GARCIA DE CARVALHO G,SANCHEZ-PUETATE J C, CASALLE N, et al. Antimicrobial photodynamic therapy associated with bone regeneration for peri-implantitis treatment: A case report[J]. Photodiagnosis Photodyn Ther, 2020, 30:101705. |
37 | CIEPLIK F, BUCHALLA W, HELLWIG E, et al. Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions-A systematic review [J]. Photodiagnosis Photodyn Ther, 2017, 18:54-62. |
38 | ALVES E, FAUSTINO M A, NEVES M G, et al. An insight on bacterial cellular targets of photodynamic inactivation [J]. Future Med Chem, 2014, 6(2):141-164. |
39 | LAURO F M, PRETTO P, COVOLO L, et al. Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates [J]. Photochem Photobiol Sci, 2002, 1(7):468-470. |
40 | TAVARES A, CARVALHO C M, FAUSTINO M A, et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment [J]. Mar Drugs, 2010,8(1):91-105. |
41 | STREET C N, PEDIGO L A, LOEBEL N G. Energy dose parameters affect antimicrobial photodynamic therapy-mediated eradication of periopathogenic biofilm and planktonic cultures [J]. Photomed Laser Surg, 2010, 28():S61-S66. |
42 | KASHEF N, HAMBLIN M R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? [J]. Drug Resist Updat, 2017, 31:31-42. |
43 | CASSIDY C M, DONNELLY R F, TUNNEY M M. Effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the antibiotic susceptibility of clinical bacterial isolates [J]. J Photochem Photobiol B, 2010, 99(1):62-66. |
44 | QI M L, CHI M H, SUN X L, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases[J]. Int J Nanomedicine, 2019, 14:6937-6956. |
45 | SHIRAI R, MIURA T, YOSHIDA A, et al. Antimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen[J]. Dent Mater J, 2016, 35(3):511-516. |
46 | QIN W, ZHENG B, YUAN Y, et al. Sensitive detection of Porphyromonas gingivalis based on magnetic capture and upconversion fluorescent identification with multifunctional nanospheres [J]. Eur J Oral Sci, 2016, 124(4):334-342. |
47 | WANG C, TAO H Q, CHENG L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles [J]. Biomaterials, 2011, 32(26):6145-6154. |
48 | LIU W Z, ZHANG Y X, YOU W W, et al. Near-infrared-excited upconversion photodynamic therapy of extensively drug-resistant Acinetobacter baumannii based on lanthanide nanoparticles [J]. Nanoscale, 2020, 12(26):13948-13957. |
49 | MEIMANDI M, TALEBI ARDAKANI M R, ESMAEIL NEJAD A, et al. The effect of photodynamic therapy in the treatment of chronic periodontitis: a review of literature [J]. J Lasers Med Sci, 2017, 8():S7-S11. |
50 | ZHANG T S, YING D, QI M L, et al. Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens [J]. Molecules, 2019, 24(15):E2692. |
51 | QI M L, LI X, SUN X L, et al. Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium [J]. Dent Mater, 2019, 35(11):1665-1681. |
[1] | 黄玉, 赵竹兰, 仲杨, 许立硕, 刘晨光, 马宁, 张莉. 重度慢性牙周炎患者软硬组织增量术联合即刻种植修复1例报告及文献复习[J]. 吉林大学学报(医学版), 2020, 46(05): 1082-1086. |
[2] | 任飞龙, 罗环宇, 郑适泽, 刘苍维, 闫广兴, 胡月, 郝新青, 史册, 孙宏晨. 补体在牙周炎发生发展过程中作用的研究进展[J]. 吉林大学学报(医学版), 2020, 46(05): 1087-1091. |
[3] | 黄江勇, 李婵秀, 郑志超, 王洪娟, 郭吕华, 吴哲, 罗涛. 益生菌对卵巢摘除致雌激素缺乏小鼠牙周组织中IL-17表达的影响及其意义[J]. 吉林大学学报(医学版), 2020, 46(04): 733-738. |
[4] | 闫圣玉, 谢亚锋, 许志杰, 刘英, 丁雅婷, 张侨, 刘菀莹, 刘丽兵. 抗菌肽LL-37对结肠癌小鼠肿瘤生长的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(03): 575-581. |
[5] | 蔡如佳, 关宁, 刘乙臻, 高秀秋, 王琳源. M1型巨噬细胞相关因子在重度慢性牙周炎患者牙龈组织中的表达及其意义[J]. 吉林大学学报(医学版), 2020, 46(02): 372-376. |
[6] | 许立硕, 黄玉, 金权, 刘晨光, 陈飞, 张莉, 马宁. 野菊花骨碎补复合中药制剂联合奥硝唑治疗慢性牙周炎的效果评价[J]. 吉林大学学报(医学版), 2019, 45(05): 1128-1133. |
[7] | 卢静一, 王雷, 郑义, 任百洁, 王晓军. 中重度多根牙牙周炎患者牙周内窥镜下非手术治疗的临床应用[J]. 吉林大学学报(医学版), 2019, 45(05): 1146-1151. |
[8] | 金权, 郑义, 许立硕, 黄玉, 马宁, 张莉. 骨膜蛋白在慢性牙周炎患者牙龈组织中的表达及其临床意义[J]. 吉林大学学报(医学版), 2019, 45(03): 634-638. |
[9] | 袁中政, 刘引, 申玉芹, 林崇韬. 牙周炎患者自身组织核酸对小鼠巨噬细胞中NLRP3 mRNA表达的影响及其意义[J]. 吉林大学学报(医学版), 2019, 45(01): 23-27. |
[10] | 郑苔菁, 白远亮, 郑佳雯, 刘洪宏, 郭子君, 王萍. 克拉霉素和甲硝唑治疗慢性牙周炎疗效的Meta分析[J]. 吉林大学学报(医学版), 2019, 45(01): 130-136. |
[11] | 金权, 许立硕, 黄玉, 焦鹏, 陈飞, 车鸿泽, 马宁, 张莉. 重度牙周炎伴口腔扁平苔藓1例报告及文献复习[J]. 吉林大学学报(医学版), 2018, 44(06): 1298-1302. |
[12] | 史金先, 张赐童, 刘璐, 黄天意, 闫通通, 孙世群, 王晓容. 纳米载银室温固化型PMMA材料对小鼠肝组织和肝细胞DNA损伤的影响[J]. 吉林大学学报(医学版), 2018, 44(05): 962-967. |
[13] | 陈飞, 史金先, 焦鹏, 金权, 许立硕, 张莉, 马宁. 牙周炎患者血清中内脂素和PGE2水平检测及其与牙周炎活动性的关系[J]. 吉林大学学报(医学版), 2018, 44(03): 563-567. |
[14] | 焦鹏, 陈飞, 金权, 陈楠楠, 张莉, 马宁. 重度牙周炎致牙齿松动脱落患者前牙美学区综合治疗1例报告及文献复习[J]. 吉林大学学报(医学版), 2018, 44(02): 421-424. |
[15] | 于艳, 韩亚琨, 张颖丽. 慢性牙周炎患者A型人格行为特征分布的调查分析[J]. 吉林大学学报(医学版), 2016, 42(02): 395-399. |
|