1 |
赵范范, 章丽娜, 商迎辉, 等. 神经干细胞的三维培养及其在神经疾病中应用的研究进展[J]. 中国生物制品学杂志, 2020, 33(2): 227-231.
|
2 |
HABANJAR O, DIAB-ASSAF M, CALDEFIE-CHEZET F, et al. 3D cell culture systems: tumor application, advantages, and disadvantages[J]. Int J Mol Sci, 2021, 22(22): 12200.
|
3 |
李秀群, 薛庆善, 保天然, 等. 改良的悬滴培养法[J]. 四川解剖学杂志, 1995, 3(2): 119-119.
|
4 |
林鹤, 王婉秋, 焦佳媛, 等. 培养板悬滴法三维细胞培养模型建立及细胞活力检测方法比较[J]. 药物评价研究, 2017, 40(8): 1103-1106.
|
5 |
FOTY R. A simple hanging drop cell culture protocol for generation of 3D spheroids[J]. J Vis Exp, 2011(51):2720.
|
6 |
罗傲翔, 吴补领, 侯晋, 等. 3D培养牙周膜干细胞生物学特性的初步研究[J]. 牙体牙髓牙周病学杂志, 2014(5): 264-268.
|
7 |
FARHANG S, SOLEIMANI M, OSTADSHARIF M, et al. Neurogenic induction of human dental pulp derived stem cells by hanging drop technique, basic fibroblast growth factor, and SHH factors[J]. Dental Res J, 2021,18: 57.
|
8 |
罗傲翔, 吴补领. 悬滴法培养牙髓干细胞生物学特性的初步研究[C]. 广州: 2014年第九次全国牙体牙髓病学学术会议论文汇编,2014: 105.
|
9 |
MORITANI Y, USUI M, SANO K, et al. Spheroid culture enhances osteogenic potential of periodontal ligament mesenchymal stem cells[J]. J Periodontal Res, 2018, 53(5): 870-882.
|
10 |
SUN B Y, ZHAO Y, WU W M,et al.A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture[J]. Acta Biomater, 2021, 135: 234-242.
|
11 |
邓俊豪, 李 苗, 张里程, 等. 三维悬滴法培养间充质干细胞在组织损伤修复中的应用及优势[J]. 中国组织工程研究, 2020, 24(7):1101-1106.
|
12 |
关冀弛, 刘 丹, 陈艳阁, 等. 神经细胞三维培养技术研究进展[J]. 精准医学杂志, 2022, 37(6): 554-558, 564.
|
13 |
张荷旋,侯本祥. 微流控芯片在口腔医学领域的应用研究进展[J].中国实用口腔科杂志,2021,14(5):610-614.
|
14 |
梁 瑜, 乔 勇, 刘星志, 等. 三维成球培养优化间充质干细胞的研究进展[J]. 中国材料进展,2020,39(4): 278-286.
|
15 |
SHAO C, CHI J, SHANG L, et al. Droplet microfluidics-based biomedical microcarriers[J]. Acta Biomater, 2022, 138:21-33.
|
16 |
RUFAS P, JEANNEAU C, ROMBOUTS C, et al. Complement C3a mobilizes dental pulp stem cells and specifically guides pulp fibroblast recruitment[J]. J Endodontics, 2016, 42(9):1377-1384.
|
17 |
SHIJIA H. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents[J]. Dental Mat, 2022,38(8): 1385-1394.
|
18 |
FRANÇA C M, TAHAYERI A, RODRIGUES N S, et al. The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials[J]. Lab on a Chip, 2020, 20(2): 405-413.
|
19 |
LORENA H S J, PHIL S, BING S, et al. Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation[J]. Tissue Eng Part C, 2018, 24(3): 158-170.
|
20 |
李正钧, 梁高峰. 三维肿瘤球聚体的构建及其研究进展[J]. 中国医学创新, 2015, 12(9): 147-149.
|
21 |
SOUZA G R, MOLINA J R, RAPHAEL R M, et al. Three-dimensional tissue culture based on magnetic cell levitation[J]. Nat Nanotechnol, 2010, 5(4): 291-296.
|
22 |
LEWIS N S, LEWIS E E L, MULLIN M, et al. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence[J]. J Tissue Eng, 2017, 8: 2041-7314.
|
23 |
肖成荣, 李丹丹, 高月. 3D HepG2细胞肝毒性评价模型的建立[C]. 重庆: 2016年第六届全国药物毒理学年会论文集, 2016: 201.
|
24 |
MARQUES I A, FERNANDES C, TAVARES N T, et al. Magnetic-based human tissue 3D cell culture: a systematic review[J].Int J Mol Sci,2022,23(20):12681.
|
25 |
CHAN Y H, LEE Y C, HUNG C Y, et al. Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modulating MAPK and NF-kB signaling pathways[J]. Stem Cell Rev Rep, 2021, 17(5): 1810-1826.
|
26 |
CALEFFI J T, AAL M C E, GALLINDO H O M,et al.Magnetic 3D cell culture: state of the art and current advances[J]. Life Sci, 2021, 286: 120028.
|
27 |
GAO Q H, WEN B Q, KANG Y N, et al. Pump-free microfluidic magnetic levitation approach for density-based cell characterization[J]. Biosens Bioelectron, 2022, 204: 114052.
|
28 |
关冀弛, 刘 丹, 陈艳阁, 等. 肿瘤细胞三维培养技术研究进展[J]. 沈阳医学院学报, 2022, 24(6): 641-647.
|
29 |
MENG R, XU H, DI S, et al. Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features[J]. Acta Biochim Biophys Sin, 2011, 43(2): 133-142.
|
30 |
来元亮. 旋转式细胞培养系统的原理及应用[J]. 生物化工, 2020, 6(3): 157-160.
|
31 |
张延芳, 陈槐卿, 黄 华, 等. 旋转生物反应器的力学环境及其对细胞生长的影响[J]. 生物医学工程学杂志, 2006, 23(2): 400-404.
|
32 |
王田田, 张巍巍, 朱澌洁, 等. 模拟微重力环境对人牙髓干细胞体内增殖能力的影响[J]. 口腔医学研究, 2014, 30(6): 489-492.
|
33 |
侯延华. 人牙髓干细胞体外三维培养扩增的实验研究[D]. 重庆: 第三军医大学, 2006.
|
34 |
CHEN J, LIU R R, YANG Y, et al. The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons[J]. Neurosci Lett,2011,505(2): 171-175.
|
35 |
ZARRINPOUR V, HAJEBRAHIMI Z, JAFARINIA M.Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition[J]. Iran J Basic Med Sci, 2017, 20(2): 178-186.
|
36 |
李 石. 模拟微重力环境对人牙周膜干细胞增殖分化的影响及其机制的研究[D]. 西安: 第四军医大学, 2009.
|
37 |
LI Y P, HE L N, PAN S, et al. Three-dimensional simulated microgravity culture improves the proliferation and odontogenic differentiation of dental pulp stem cell in PLGA scaffolds implanted in mice[J]. Mol Med Rep, 2017, 15(2): 873-878.
|
38 |
赵灵犀, 丁 皓, 徐 萌, 等. 旋转式三维细胞培养装置的研制[J]. 中国组织工程研究与临床康复, 2011, 15(19): 3531-3533.
|
39 |
MARITAN S M, LIAN E Y, MULLIGAN L M. An efficient and flexible cell aggregation method for 3D spheroid production[J]. J Vis Exp, 2017(121): 55544.
|
40 |
肖 杨, 刘 然, 邢丽娜, 等. 采用微团培养模型探讨染料木黄酮的发育毒性[J]. 癌变·畸变·突变, 2010, 22(4): 271-275.
|
41 |
王亦菁, 宋九余, 金 岩, 等. 牙髓干细胞体外三维培养及生物学特性的研究[J]. 现代口腔医学杂志, 2009, 23(6): 631-633.
|
42 |
FERRÉ F C, LARJAVA H, LOISON-ROBERT L S, et al. Formation of cartilage and synovial tissue by human gingival stem cells[J]. Stem Cells Dev, 2014, 23(23): 2895-2907.
|
43 |
黄亮节, 翁土军, 张春丽, 等. Pellet培养与纤维蛋白凝胶支架体外成软骨能力的比较[J].中国骨与关节杂志, 2017, 6(3): 198-203.
|
44 |
ZHANG S Y, BUTTLER-BUECHER P, DENECKE B,et al. A comprehensive analysis of human dental pulp cell spheroids in a three-dimensional pellet culture system[J]. Arch Oral Biol, 2018, 91: 1-8.
|
45 |
刘兰涛, 朱瑜洁, 黄 博, 等. Pellet法和Micromass法诱导软骨终板干细胞成软骨的比较[J]. 中国矫形外科杂志, 2013, 21(1): 75-81.
|
46 |
CARLSSON J, YUHAS J M. Liquid-overlay culture of cellular spheroids[J]. Recent Results Cancer Res, 1984, 95: 1-23.
|
47 |
梁婷婷, 张世昌. 间充质干细胞球形体培养的研究进展[J].中华细胞与干细胞杂志(电子版),2021,11(6): 372-377.
|
48 |
COSTA E C, DE MELO-DIOGO D D, MOREIRA A F, et al. Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches[J]. Biotechnol J, 2018, 13(1). DOI: 10.1002/biot.201700417 .
doi: 10.1002/biot.201700417
|
49 |
马忠义, 庄 华, 常 成, 等. 多细胞肿瘤球体培养技术在膀胱癌治疗中的研究进展[J]. 肿瘤研究与临床, 2018, 30(7): 490-493.
|
50 |
ZHANG S H, LIN A Q, TAO Z W, et al. Microsphere-containing hydrogel scaffolds for tissue engineering[J].Chem Asian J,2022,17(20):e202200630.
|
51 |
孔丽欣, 李 静, 徐丹阳, 等. 凝胶样支架材料对三维培养的人牙髓干细胞增殖的影响[J]. 口腔医学, 2018, 38(7): 593-597.
|
52 |
HUANG Q T, ZOU Y J, ARNO M C, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]. Chem Soc Rev, 2017, 46(20): 6255-6275.
|
53 |
帕尔哈提·阿布肚热合曼, 白尔娜·吾守尔, 木合塔尔·霍 加, 等. 兔牙髓干细胞与Pluronic F-127嵌段共聚物的体外相容性[J]. 中华口腔医学研究杂志(电子版), 2016, 10(2): 97-103.
|
54 |
FUKUSHIMA K A, MARQUES M M, TEDESCO T K,et al. Screening of hydrogel-based scaffolds for dental pulp regeneration-a systematic review[J]. Arch Oral Biol, 2019, 98: 182-194.
|
55 |
TALAAT W, ARYAL AC S, KAWAS S A, et al. Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration[J]. Int J Nanomedicine, 2020, 15: 7775-7789.
|
56 |
黄健萍, 王 君, 林思恩. 钙粘蛋白多肽修饰的透明质酸水凝胶诱导牙本质-牙髓再生的研究[J]. 中国卫生产业, 2018, 15(9): 162-163.
|
57 |
李鑫平. β:TCP/壳聚糖水凝胶的改性对牙髓干细胞生长与矿化的影响[D]. 广州: 南方医科大学, 2019.
|
58 |
于海悦, 麻丹丹, 吴补领. 3D打印明胶海藻酸钠凝胶支架对人牙髓细胞的黏附增殖作用[J]. 南方医科大学学报, 2017,37(5):668-672.
|
59 |
RAVINDRAN S, ZHANG Y B, HUANG C C, et al. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold[J]. Tissue Eng Part A, 2014,20(1/2):92-102.
|
60 |
马学娟, 陈 旭. 牙源性干细胞应用于牙髓牙本质再生研究进展[J]. 中国实用口腔科杂志,2017,10(10): 635-638.
|
61 |
李晓霞, 方滕姣子, 余 湜, 等. 人乳牙牙髓干细胞在干细胞治疗中的应用[J]. 华西口腔医学杂志, 2017, 35(5): 533-537.
|
62 |
李欣悦, 李熙恒, 毛天娇, 等. 三维培养人牙周膜干细胞的形态、活性及成骨分化能力[J]. 中国组织工程研究, 2023, 27(6): 846-852.
|
63 |
张晓月, 赵 卿, 王小聪, 等. 牙源性干细胞在生物牙根中的应用进展[J].临床口腔医学杂志, 2022, 38(8): 502-504.
|
64 |
SALGADO C L, BARRIAS C C, MONTEIRO F J M. Clarifying the tooth-derived stem cells behavior in a 3D biomimetic scaffold for bone tissue engineering applications[J]. Front Bioeng Biotechnol, 2020, 8: 724.
|
65 |
TATSUHIRO F, SEIKO T, YUSUKE T, et al. Dental pulp stem cell-derived, scaffold-free constructs for bone regeneration[J]. Int J Mol Sci, 2018, 19(7): 1846.
|
66 |
JAHANBIN A, RASHED R, ALAMDARI D H, et al. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells[J]. J Oral Maxillofac Surg, 2016, 74(4): 829.e1-829.e9.
|
67 |
KHAJEH S, RAZBAN V, TALAEI-KHOZANI T,et al.Enhanced chondrogenic differentiation of dental pulp-derived mesenchymal stem cells in 3D pellet culture system: effect of mimicking hypoxia[J]. Biologia, 2018, 73(7): 715-726.
|
68 |
KIM H J, SUNG I Y, CHO Y C, et al. Three-dimensional spheroid formation of cryopreserved human dental follicle-derived stem cells enhances pluripotency and osteogenic induction properties[J]. Tissue Eng Regen Med, 2019, 16(5): 513-523.
|
69 |
ROOZAFZOON R, LASHAY A, VASEI M, et al. Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network[J]. Biochem Biophysi Res Com, 2015, 457(2): 154-160.
|
70 |
罗傲翔, 吴补领. 3D培养牙周膜干细胞提高其抗炎特性[C]. 北京: 第七次中国老年口腔医学年会暨亚洲老年口腔医学学术研讨会论文汇编, 2012: 141-142.
|
71 |
王松灵. 异体干细胞的牙周再生基础及转化研究[C]. 南京: 2016牙周病学学术研讨会, 2016: 7-8.
|