[1] SIKORA A G, GELBARD A, DAVIES M A, et al. Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy[J]. Clin Cancer Res, 2010, 16(6):1834-1844. [2] DE BOER I H, RUE T C, HALL Y N, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States[J]. JAMA, 2011, 305(24):2532-2539. [3] MAZZONE T. Increased prevalence of significant coronary artery calcification in patients with diabetes[J]. Diabetes Care, 2001, 24(8):1508. [4] QUARLES L D. Role of FGF23 in vitamin D and phosphate metabolism:implications in chronic kidney disease[J]. Exp Cell Res, 2012, 318(9):1040-1048. [5] IBRAHIM S, RASHED LA. Serum fibroblast growth factor-23 levels in chronic haemodialysis patients[J]. Int Urol Nephrol, 2009, 41(1):163-169. [6] 詹理睿, 王小琴, 邹新蓉, 等. 肾元颗粒影响糖尿病小鼠肾脏中miR-199b-5p与钙磷代谢的研究[J]. 中华中医药学刊, 2017, 35(11):2819-2823. [7] 陈立, 王小琴. Klotho基因调控的FGF23/FGFR1信号通路对人肾小管上皮细胞羟化酶表达的影响及肾元颗粒的干预作用[J].中华中医药杂志, 2019, 34(10):4547-4552. [8] 宋纯东, 张霞, 宋丹丹, 等. 益气养阴活血方对糖尿病肾病大鼠肾组织WT1影响的实验研究[J]. 中国中医基础医学杂志, 2016, 22(5):626-627. [9] 黄继汉, 黄晓晖, 陈志扬, 等. 药理试验中动物间和动物与人体间的等效剂量换算[J]. 中国临床药理学与治疗学, 2004(9):1069-1072. [10] 贺薇薇, 冯汉鸽, 汪琦, 等. 肾安颗粒中淫羊藿和黄芪半仿生提取工艺研究[J]. 医药导报, 2010, 29(8):1060-1062. [11] 王小琴, 谭大琦, 金劲松. 肾安颗粒治疗慢性肾衰竭的临床研究[J]. 中国中西医结合肾病杂志, 2003, 4(7):393-395. [12] 邵朝弟, 王小琴, 李勇, 等. 肾安片治疗慢性肾功能衰竭30例临床研究[J].中医杂志, 2003, 44(3):194-196. [13] 邹新蓉, 王小琴, 王长江, 等. 肾安颗粒对肾性骨病模型大鼠骨组织骨保护素表达的影响[J]. 江苏中医药, 2014, 46(7):71-73. [14] 邹新蓉, 王小琴, 王长江. Klotho基因在残余肾模型大鼠肾脏的表达及淫羊藿、黄芪、大黄复方的干预作用研究[J]. 华南国防医学杂志, 2015, 29(3):196-200. [15] 邹新蓉, 王小琴, 王长江, 等. 肾安颗粒对肾性骨病模型大鼠骨组织BMP-7表达及骨代谢的影响[J]. 湖北中医杂志, 2013, 35(4):11-13. [16] SHAO J S, SIERRA O L, COHEN R, et al. Vascular calcification and aortic fibrosis:a bifunctional role for osteopontin in diabetic arteriosclerosis[J]. Arterioscler Thromb Vasc Biol, 2011, 31(8):1821-1833. [17] WERNER A, DEHMELT L, NALBANT P. Na+-dependent phosphate cotransporters:the NaPi protein families[J]. J Exp Biol, 1998, 201(Pt 23):3135-3142. [18] TAKEDA E, TAKETANI Y, MORITA K, et al. Sodium-dependent phosphate co-transporters[J]. Int J Biochem Cell Biol, 1999, 31(3/4):377-381. [19] WU Y, HAN X, WANG L, et al. Indoxyl sulfate promotes vascular smooth muscle cell calcification via the JNK/Pit-1 pathway[J]. Ren Fail, 2016, 38(10):1-9. [20] GOETZ R, NAKADA Y, HU M C, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation[J]. Proc Natl Acad Sci U S A, 2010, 107(1):407-412. [21] KURO O M. Klotho and endocrine fibroblast growth factors:markers of chronic kidney disease progression and cardiovascular complications[J]. Nephrol Dial Transplant, 2019, 34(1):15-21. [22] LINDERGL K, OLAUSON H, AMIN R, et al. Arterial Klotho Expression and FGF23 Effects on Vascular Calcification and Function[J]. PLoS One, 2013, 8(4):e60658. [23] KAN S, ISHIZAKA N, MITANI H, et al. Iron chelation and a free radical scavenger suppress angiotensin Ⅱ-induced downregulation of klotho, an anti-aging gene, in rat[J]. FEBS Lett, 2003, 551(1):58-62. [24] HU M C, SHI M, ZHANG J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease[J]. J Am Soc Nephrol, 2011, 22(1):124-136. [25] SMITH E R, HOLT S G, HEWITSON T D. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-beta autoinduction[J]. Int J Biochem Cell Biol, 2017, 92:63-78. [26] YAMAZAKI M, OZONO K, OKADA T, et al. Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells[J]. J Cell Biochem, 2010, 111(5):1210-1221. [27] ZHANG L, XIE P, WANG J, et al. Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension[J]. J Biol Chem, 2010, 285(18):13666-13677. [28] ABDEL-RAHMAN E M, OKUSA M D. Effects of aging on renal function and regenerative capacity[J]. Nephron Clin Pract, 2014, 127(1-4):15-20. |