吉林大学学报(医学版) ›› 2021, Vol. 47 ›› Issue (4): 1043-1049.doi: 10.13481/j.1671-587X.20210432
收稿日期:
2020-11-07
出版日期:
2021-07-28
发布日期:
2021-07-22
通讯作者:
郭彩霞,李艳博
E-mail:guocx@ccmu.edu.cn;ybli@ccmu.edu.cn
作者简介:
刘雨凡(1996-),女,北京市人,在读硕士研究生,主要从事颗粒物毒理学方面的研究。
基金资助:
Received:
2020-11-07
Online:
2021-07-28
Published:
2021-07-22
摘要:
纳米二氧化硅(SiNPs)是我国乃至世界范围内产量最高和应用最为广泛的一种纳米粉体材料,其环境暴露和健康效应逐渐受到关注。在产品开发、制造、使用和废弃处理等过程中,人类可通过职业接触、环境暴露、医源性和食源性等途径接触到SiNPs。SiNPs暴露与内皮功能障碍、动脉粥样硬化、血栓形成和心肌收缩功能障碍等多种心血管不良事件有关,涉及的作用机制主要包括氧化应激、炎症、凝血功能障碍和离子通道等。此外,SiNPs与心血管系统的相互作用及引发的毒性效应受暴露模式(如染毒剂量、途径、次数)和颗粒的理化性质(如粒径、表面积、表面修饰)等影响。现结合国内外最新研究成果,从毒性作用、毒作用机制和毒作用影响因素方面系统阐述SiNPs的心血管毒性,为SiNPs的毒理学安全性评价以及加强纳米材料的安全合理使用提供依据。
中图分类号:
刘雨凡,王继,郭彩霞,李艳博. 纳米二氧化硅的心血管系统毒性及其作用机制的研究进展Research progress in cardiovascular toxicity of silica nanoparticles and its mechanism[J]. 吉林大学学报(医学版), 2021, 47(4): 1043-1049.
1 | 施普林格·自然集团. 纳米科学与技术:现状与展望 2019 [R/OL]. [2021-04-05]. |
2 | CURRAN A D. WHO guidelines on protecting workers from potential risks of manufactured nanomaterials[J]. Occup Med, 2020, 70(7): 528. |
3 | 许亚慧, 张 华, 胡青芳, 等. 纳米二氧化硅的系统毒性及机制[J]. 中国工业医学杂志, 2019, 32(2): 116-120. |
4 | LIAO H Y, CHUNG Y T, LAI C H, et al. Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers [J]. Ind Health, 2014, 52(3): 199-215. |
5 | LIAO H Y, CHUNG Y T, LAI C H, et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials[J]. Nanotoxicology, 2014, 8(): 100-110. |
6 | 章 军. 纳米二氧化硅的心血管毒性研究[D]. 杭州: 浙江大学, 2007. |
7 | 张晓雪. 纳米二氧化硅对职业接触人群健康的影响研究[D]. 唐山:华北理工大学, 2018. |
8 | LEE J A, KIM M K, SONG J H, et al. Biokinetics of food additive silica nanoparticles and their interactions with food components[J]. Colloids Surf B Biointerfaces, 2017, 150: 384-392. |
9 | NABESHI H, YOSHIKAWA T, MATSUYAMA K, et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application [J]. Biomaterials, 2011, 32(11):2713-2724. |
10 | DU Z, ZHAO D, JING L, et al. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation [J]. Cardiovasc Toxicol, 2013, 13(3): 194-207. |
11 | DU Z, CHEN S, CUI G, et al. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation [J]. Int J Mol Med, 2019, 43(3): 1229-1240. |
12 | YANG M, JING L, WANG J, et al. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation[J]. Int J Nanomedicine, 2016, 11: 6217-6228. |
13 | NEMMAR A, ALBARWANI S, BEEGAM S, et al. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation[J]. Int J Nanomedicine, 2014, 9: 2779-2789. |
14 | FAROOQ A, WHITEHEAD D, AZZAWI M. Attenuation of endothelial-dependent vasodilator responses, induced by dye-encapsulated silica nanoparticles, in aortic vessels[J]. Nanomedicine (Lond), 2014, 9(3): 413-425. |
15 | ONODERA A, YAYAMA K, TANAKA A, et al. Amorphous nanosilica particles evoke vascular relaxation through PI3K/Akt/eNOS signaling[J]. Fundam Clin Pharmacol, 2016, 30(5): 419-428. |
16 | LI Y B, MA R, LIU X Y, et al. Endoplasmic reticulum stress-dependent oxidative stress mediated vascular injury induced by silica nanoparticles in vivo and in vitro [J]. NanoImpact, 2019, 14: 100169. |
17 | GUO C, XIA Y, NIU P, et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling[J]. Int J Nanomedicine, 2015, 10: 1463-1477. |
18 | LIU X, SUN J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways[J].Biomaterials,2010,31(32):8198-8209. |
19 | ZHOU F, LIAO F, CHEN L, et al. The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells[J]. Environ Sci Pollut Res Int, 2019, 26(2): 1911-1920. |
20 | NAPIERSKA D, QUARCK R, THOMASSEN L C J,et al. Amorphous silica nanoparticles promote monocyte adhesion to human endothelial cells: size-dependent effect[J]. Small, 2013, 9(3): 430-438. |
21 | PETRICK L, ROSENBLAT M, PALAND N, et al. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation[J]. Environ Toxicol, 2016, 31(6): 713-723. |
22 | GUO C, MA R, LIU X, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling[J]. Sci Total Environ, 2018, 631/632: 570-579. |
23 | MA R, QI Y, ZHAO X, et al. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE-/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage[J]. Part Fibre Toxicol, 2020, 17(1): 50. |
24 | GRYSHCHUK V, GALAGAN N. Silica nanoparticles effects on blood coagulation proteins and platelets[J]. Biochem Res Int, 2016, 2016: 2959414. |
25 | FENG L, YANG X, LIANG S,et al.Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway[J]. Part Fibre Toxicol, 2019, 16(1): 16. |
26 | SANTOS-MARTINEZ M J, TOMASZEWSKI K A, MEDINA C, et al. Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry[J]. Int J Nanomedicine, 2015, 10: 5107-5119. |
27 | CORBALAN J J, MEDINA C, JACOBY A, et al. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis[J]. Int J Nanomedicine, 2012, 7: 631-639. |
28 | CHAN W T, LIU C C, CHIANG CHIAU J S, et al. In vivo toxicologic study of larger silica nanoparticles in mice[J]. Int J Nanomedicine, 2017, 12: 3421-3432. |
29 | DUAN J, YU Y, LI Y, et al. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos[J]. Nanotoxicology, 2016, 10(5): 575-585. |
30 | MOHAMMADPOUR R, YAZDIMAMAGHANI M, CHENEY D L, et al. Subchronic toxicity of silica nanoparticles as a function of size and porosity[J]. J Control Release, 2019, 304: 216-232. |
31 | FENG L, NING R, LIU J, et al. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction[J]. J Hazard Mater, 2020, 391: 122206. |
32 | GUERRERO-BELTRÁN C E, BERNAL-RAMÍREZ J, LOZANO O, et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2017, 312(4): H645-H661. |
33 | DUBES V, PARPAITE T, DUCRET T, et al. Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells[J]. Toxicology, 2017, 375: 37-47. |
34 | PHAM D H, DE ROO B, NGUYEN X B, et al. Use of zebrafish larvae as a multi-endpoint platform to characterize the toxicity profile of silica nanoparticles [J]. Sci Rep, 2016, 6: 37145. |
35 | ORLANDO A, CAZZANIGA E, TRINGALI M,et al. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner[J]. Int J Nanomed, 2017, 12: 3547-3559. |
36 | POPARA J, ACCOMASSO L, VITALE E, et al. Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration [J]. Nanomedicine, 2018, 13(10): 1121-1138. |
37 | YE Y, LIU J, CHEN M, et al. In vitro toxicity of silica nanoparticles in myocardial cells[J]. Environ Toxicol Pharmacol, 2010, 29(2): 131-137. |
38 | DUAN J, YU Y, LI Y, et al. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint [J]. PLoS One, 2013, 8(4): e62087. |
39 | HOZAYEN W G, MAHMOUD A M, DESOUKY E M,et al. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats[J]. Biomed Pharmacother, 2019, 109: 2527-2538. |
40 | NEMMAR A, YUVARAJU P, BEEGAM S, et al. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles[J]. Int J Nanomedicine, 2016, 11: 919-928. |
41 | DUAN J, LIANG S, YU Y, et al. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos[J]. Nanotoxicology, 2018, 12(5): 470-484. |
42 | YANG L, YAN Q, ZHAO J, et al. The role of potassium channel in silica nanoparticle-induced inflammatory effect in human vascular endothelial cells in vitro [J]. Toxicol Lett, 2013, 223(1): 16-24. |
43 | YOSHIDA T, YOSHIOKA Y, TOCHIGI S, et al. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice[J]. Part Fibre Toxicol, 2013, 10: 41. |
44 | HAO F, LIU Q S, CHEN X, et al. Exploring the heterogeneity of nanoparticles in their interactions with plasma coagulation factor XII[J]. ACS Nano, 2019, 13(2): 1990-2003. |
45 | BAUER A T, STROZYK E A, GORZELANNY C, et al. Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells[J]. Biomaterials, 2011, 32(33): 8385-8393. |
46 | LIU X, XUE Y, DING T, et al. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions[J]. Part Fibre Toxicol, 2012, 9: 36. |
47 | GUO C, WANG J, JING L, et al. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles[J]. Environ Pollut, 2018, 236: 926-936. |
48 | DU Z J, CUI G Q, ZHANG J, et al. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway[J]. Int J Nanomedicine, 2017, 12: 2179-2188. |
49 | LOZANO O, SILVA-PLATAS C, CHAPOY-VILLANUEVA H, et al. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes [J]. Part Fibre Toxicol, 2020, 17(1): 15. |
50 | GUO C, MA R, LIU X, et al. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway[J]. Chemosphere, 2018, 210: 183-192. |
51 | KAN H, PAN D, CASTRANOVA V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway[J]. Inhal Toxicol, 2018, 30(9/10): 335-342. |
52 | ORNELAS-SOTO N, RUBIO-GOVEA R, GUERRERO-BELTRÁN C E, et al. Enhancing internalization of silica particles in myocardial cells through surface modification[J]. Mater Sci Eng C, 2017, 79: 831-840. |
53 | YOSHIDA T, YOSHIOKA Y, MORISHITA Y,et al. Protein corona changes mediated by surface modification of amorphous silica nanoparticles suppress acute toxicity and activation of intrinsic coagulation cascade in mice[J]. Nanotechnology, 2015, 26(24): 245101. |
54 | LIU X Y, DING Y X, ZHAO B J, et al. In vitro and in vivo evaluation of puerarin-loaded PEGylated mesoporous silica nanoparticles[J]. Drug Dev Ind Pharm, 2016, 42(12): 2031-2037. |
55 | HASSANKHANI R, ESMAEILLOU M, TEHRANI A A, et al. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice[J]. Environ Sci Pollut Res Int, 2015, 22(2): 1127-1132. |
56 | CHEN Z, MENG H, XING G M, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population [J]. Environ Sci Technol, 2008, 42(23): 8985-8992. |
57 | FENG L, YANG X, SHI Y, et al. Co-exposure subacute toxicity of silica nanoparticles and lead acetate on cardiovascular system [J]. Int J Nanomedicine, 2018, 13: 7819-7834. |
58 | DUAN J, YU Y, LI Y, et al. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2016, 151: 152-162. |
[1] | 王海英, 武心洁, 苑金香, 韩逸君, 张宇琪, 孟慧, 徐赫松, 亚白柳. Wnt5a/Frizzled-2/Ca2+和Wnt3a/Frizzled通路的生理及病理学研究进展Research progress in physiology and pathology of Wnt5a/Frizzled-2/Ca2+ and Wnt3a/Frizzled pathways[J]. 吉林大学学报(医学版), 2021, 47(3): 811-818. |
[2] | 李保泉, 刘璐瑶, 张雯雯, 刘可可, 姜婷, 布文奂, 李波, 孙宏晨. α-Si3N4与SP1SiO2熔附条件和填料比例对复合树脂性能的影响[J]. 吉林大学学报(医学版), 2018, 44(05): 968-973. |
[3] | 杨曼, 孙小铃, 王继, 梁宝璐, 李艳博, 荆黎, 孙志伟. 小鼠体内气管滴注纳米二氧化硅对体内主要脏器的影响[J]. 吉林大学学报(医学版), 2017, 43(02): 230-235. |
[4] | 潘涛, 郭彩霞, 金明华, 刘晓梅, 刘颖, 杜海英, 孙志伟. 纳米二氧化硅颗粒对HL-7702细胞黏附和迁移能力的影响[J]. 吉林大学学报(医学版), 2015, 41(04): 732-736. |
[5] | 耿维佳, 李阳, 于永波, 于洋, 段军超, 杨玉梅, 邹洋, 孙志伟. N-乙酰半胱氨酸对纳米二氧化硅所致细胞毒性的抑制作用[J]. 吉林大学学报(医学版), 2015, 41(03): 486-490. |
[6] | 夏银叶, 李艳博, 牛丕业, 王晖, 王翼飞, 梁宝璐, 赵峰, 郭彩霞, 孙志伟. 纳米二氧化硅颗粒对血管内皮细胞的毒性及其凋亡诱导作用[J]. 吉林大学学报(医学版), 2015, 41(03): 454-459. |
[7] | 杨艳艳, 金明华, 李艳博, 李阳, 王佳慧, 郑彤, 王思惠, 迟翔宇, 张宇佳, 孙志伟. 纳米SiO2对人神经母细胞瘤SH-SY5Y细胞的凋亡诱导作用及其机制[J]. 吉林大学学报(医学版), 2015, 41(02): 249-254. |
[8] | 李艳博,周维,于永波,段军超,郭彩霞,孙志伟. 纳米二氧化硅颗粒对血管内皮细胞的毒性及其氧化损伤作用[J]. 吉林大学学报(医学版), 2014, 40(03): 476-481. |
[9] | 于嵩,胡江平. 姜黄素对铁负载小鼠脑组织caspase-3、caspase-9和livin蛋白表达的影响及其对神经系统的保护作用[J]. 吉林大学学报(医学版), 2013, 39(5): 868-871. |
[10] | 韩威, 宫萍, 常明, 张瑜, 张颖, 王秋艳, 胡轶虹,胡林森. 鱼藤酮对PC12细胞毒性作用的机制[J]. J4, 2007, 33(1): 98-101. |
|