吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (1): 249-255.doi: 10.13481/j.1671-587X.20220132
收稿日期:
2021-02-14
出版日期:
2022-01-28
发布日期:
2022-01-17
通讯作者:
刘敏
E-mail:liu_min99@jlu.edu.cn
作者简介:
王瑞凤(1993-),女,山东省威海市人,在读硕士研究生,主要从事牙周疾病和种植体周围疾病方面的研究。
基金资助:
Received:
2021-02-14
Online:
2022-01-28
Published:
2022-01-17
摘要:
抗菌蓝光(aBL)疗法是一种基于光的非抗生素抗菌方法,具有内在的抗菌作用,不需要外源性光敏剂的参与,因此受到越来越多的关注。aBL疗法的作用机制主要是细菌中存在的内源性光敏剂吸收特定波长的蓝光,随后被激发到三重态产生活性氧(ROS),ROS迅速与微生物大分子反应,损害细胞膜、脂质和遗传物质等,从而实现抗菌的目的。aBL可以高效灭活浮游细菌和抑制菌斑生物膜的形成,并能降低动物模型感染部位的细菌存活率。目前aBL已被广泛应用于寻常痤疮的治疗,在其他方面的应用还处于临床试验阶段。细菌感染性疾病是一组由细菌引起的疾病,是导致患者病灶不愈甚至死亡的重要原因。目前抗生素等药物是治疗细菌感染性疾病的主要手段,但随着细菌耐药性的增加,临床抗菌治疗面临重大挑战。aBL作为一种既能安全高效灭活细菌又不易产生耐药性的抗菌新方法,对于治疗细菌感染性疾病具有极大的优势和前景。现重点介绍aBL对细菌的灭活机制、灭活效果(包括浮游细菌、菌斑生物膜和体内外实验)和aBL在细菌感染性疾病中的临床应用研究,旨在为aBL成功应用于细菌感染性疾病的治疗提供参考。
中图分类号:
王瑞凤,刘旭旭,李芳,刘敏. 抗菌蓝光在治疗细菌感染性疾病中应用的研究进展Research progress in application of antimicrobial blue light in treatment of bacterial infectious diseases[J]. 吉林大学学报(医学版), 2022, 48(1): 249-255.
1 | 蒲 璐, 黄亚佳, 杨 帅, 等. 合成生物学在感染性疾病防治中的应用[J].合成生物学,2020, 1(2): 141-157. |
2 | GWYNNE P J, GALLAGHER M P. Light as a broad-spectrum antimicrobial[J]. Front Microbiol, 2018, 9: 119. |
3 | WANG Y, WANG Y, WANG Y, et al. Antimicrobial blue light inactivation of pathogenic microbes: State of the art[J]. Drug Resist Updat, 2017, 33-35: 1-22. |
4 | PLAVSKII V Y, MIKULICH A V, TRETYAKOVA A I,et al. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells[J]. J Photochem Photobiol B, 2018, 183: 172-183. |
5 | BÄUMLER W, ABELS C, KARRER S, et al. Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light[J]. Br J Cancer, 1999, 80(3/4): 360-363. |
6 | GLAESER J, NUSS A M, BERGHOFF B A, et al. Singlet oxygen stress in microorganisms[J]. Adv Microb Physiol, 2011, 58: 141-173. |
7 | BUMAH V V, ABOUALIZADEH E, MASSON-MEYERS D S, et al. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470 nm) and methicillin-resistant Staphylococcus aureus [J]. J Photochem Photobiol B Biol, 2017, 167: 150-157. |
8 | AMIN R M, BHAYANA B, HAMBLIN M R, et al. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies[J]. Lasers Surg Med, 2016, 48(5): 562-568. |
9 | BATTISTI A, MORICI P, GHETTI F, et al. Spectroscopic characterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins[J]. Biophys Chem, 2017, 229: 19-24. |
10 | FYRESTAM J, BJURSHAMMAR N, PAULSSON E,et al. Determination of porphyrins in oral bacteria by liquid chromatography electrospray ionization tandem mass spectrometry[J]. Anal Bioanal Chem, 2015,407(23): 7013-7023. |
11 | SOUKOS N S, SOM S, ABERNETHY A D, et al. Phototargeting oral black-pigmented bacteria[J]. Antimicrob Agents Chemother, 2005,49(4):1391-1396. |
12 | CIEPLIK F, SPÄTH A, LEIBL C, et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers[J]. Clin Oral Investig, 2014, 18(7): 1763-1769. |
13 | LIU X, CHANG Q, FERRER-ESPADA R, et al. Photoinactivation of moraxella catarrhalis using 405 nm blue light: implications for the treatment of otitis media[J]. Photochem Photobiol, 2020,96(3): 611-617. |
14 | MELØ T B, JOHNSSON M. In vivo porphyrin fluorescence from Propionibacterium acnes. A characterization of the fluorescing pigments[J]. Dermatology, 1982, 164(3): 167-174. |
15 | KARNER L, DRECHSLER S, METZGER M, et al. Antimicrobial photodynamic therapy fighting polymicrobial infections-a journey from in vitro to in vivo [J]. Photochem Photobiol Sci, 2020, 19(10): 1332-1343. |
16 | WANG Y, FERRER-ESPADA R, BAGLO Y, et al. Antimicrobial blue light inactivation of neisseria gonorrhoeae: roles of wavelength,endogenous photosensitizer,oxygen,and reactive oxygen species[J]. Lasers Surg Med, 2019, 51(9): 815-823. |
17 | YOSHIDA A, SASAKI H, TOYAMA T, et al. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment[J]. Sci Rep, 2017, 7(1): 5225. |
18 | GRINHOLC M, RODZIEWICZ A, FORYS K, et al. Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism[J].Appl Microbiol Biotechnol,2015,99(21): 9161-9176. |
19 | HELD K, RAMAGE E, JACOBS M, et al. Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1[J]. J Bacteriol, 2012, 194(23): 6387-6389. |
20 | HUNGERER C, TROUP B, RÖMLING U, et al. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene[J]. Mol Gen Genet, 1995, 248(3): 375-380. |
21 | RUPEL K, ZUPIN L, OTTAVIANI G, et al. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress[J]. NPJ Biofilms Microbiomes, 2019, 5(1): 29. |
22 | FYRESTAM J, BJURSHAMMAR N, PAULSSON E,et al. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis [J]. Photodiagnosis Photodyn Ther, 2017, 17: 115-123. |
23 | KUMAR A, GHATE V, KIM M J, et al. Kinetics of bacterial inactivation by 405 nm and 520 nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility[J]. J Photochem Photobiol B, 2015, 149: 37-44. |
24 | LUBART R, LIPOVSKI A, NITZAN Y, et al. A possible mechanism for the bactericidal effect of visible light[J]. Laser Ther, 2011, 20(1): 17-22. |
25 | WANG Y, FERRER-ESPADA R, BAGLO Y, et al. Photoinactivation of neisseria gonorrhoeae: a paradigm-changing approach for combating antibiotic-resistant gonococcal infection[J]. J Infect Dis, 2019, 220(5): 873-881. |
26 | HOPE C K, HINDLEY J A, KHAN Z, et al. Lethal photosensitization of Porphyromonas gingivalis by their endogenous porphyrins under anaerobic conditions: an in vitro study[J].Photodiagnosis Photodyn Ther,2013,10(4): 677-682. |
27 | HUANG L Y, XUAN Y, KOIDE Y, et al. Type Ⅰ and type Ⅱ mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria[J]. Lasers Surg Med, 2012, 44(6): 490-499. |
28 | PIRBADIAN S, CHAVEZ M S, EL-NAGGAR M Y. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer[J]. PNAS, 2020, 117(33): 20171-20179. |
29 | NOVO D, PERLMUTTER N G, HUNT R H, et al. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique[J].Cytometry, 1999,35(1): 55-63. |
30 | BIENER G, MASSON-MEYERS D S, BUMAH V V,et al. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential[J].J Photochem Photobiol B,2017,170:118-124. |
31 | KIM M J, YUK H G. Antibacterial mechanism of 405-nanometer light-emitting diode against salmonella at refrigeration temperature[J]. Appl Environ Microbiol, 2017, 83(5):02582. |
32 | WU J, CHU Z, RUAN Z, et al. Changes of intracellular porphyrin, reactive oxygen species, and fatty acids profiles during inactivation of methicillin-resistant staphylococcus aureus by antimicrobial blue light[J]. Front Physiol, 2018, 9: 1658. |
33 | CHU Z, HU X, WANG X, et al. Inactivation of Cronobacter sakazakii by blue light illumination and the resulting oxidative damage to fatty acids[J]. Can J Microbiol, 2019, 65(12): 922-929. |
34 | DUBBS J M, MONGKOLSUK S. Peroxide-sensing transcriptional regulators in bacteria[J]. J Bacteriol, 2012, 194(20): 5495-5503. |
35 | FERRER-ESPADA R, LIU X, GOH X S, et al. Antimicrobial blue light inactivation of polymicrobial biofilms[J]. Front Microbiol, 2019, 10: 721. |
36 | DAI T, GUPTA A, HUANG Y Y, et al. Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions[J]. Photomed Laser Surg, 2013, 31(11): 531-538. |
37 | MASSON-MEYERS D S, BUMAH V V, CASTEL C,et al. Pulsed 450 nm blue light significantly inactivates Propionibacterium acnes more than continuous wave blue light[J]. J Photochem Photobiol B, 2020, 202: 111719. |
38 | BUMAH V V, MASSON-MEYERS D S, ENWEMEKA C S. Pulsed 450 nm blue light suppresses MRSA and Propionibacterium acnes in planktonic cultures and bacterial biofilms[J]. J Photochem Photobiol B, 2020, 202: 111702. |
39 | HAMBLIN M R, VIVEIROS J, YANG C, et al. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light[J]. Antimicrob Agents Chemother, 2005, 49(7): 2822-2827. |
40 | LEANSE L G, HARRINGTON O D, FANG Y, et al. Evaluating the potential for resistance development to antimicrobial blue light (at 405 nm) in gram-negative bacteria: In vitro and in vivo studies[J]. Front Microbiol, 2018, 9: 2403. |
41 | NITZAN Y, SALMON-DIVON M, SHPOREN E,et al. ALA induced photodynamic effects on gram positive and negative bacteria[J]. Photochem Photobiol Sci, 2004, 3(5): 430-435. |
42 | TARASZKIEWICZ A, FILA G, GRINHOLC M, et al. Innovative strategies to overcome biofilm resistance[J]. Biomed Res Int, 2013, 2013: 150653. |
43 | LEBEAUX D, GHIGO J M, BELOIN C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics[J]. Microbiol Mol Biol Rev, 2014, 78(3): 510-543. |
44 | HALSTEAD F D, THWAITE J E, BURT R, et al. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms[J]. Appl Environ Microbiol, 2016, 82(13): 4006-4016. |
45 | WANG Y, WU X, CHEN J, et al. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies[J]. J Infect Dis, 2016, 213(9): 1380-1387. |
46 | ZHU H, KOCHEVAR I E, BEHLAU I, et al. Antimicrobial blue light therapy for infectious keratitis: ex vivo and in vivo studies[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 586-593. |
47 | WANG Y C, HARRINGTON O D, WANG Y,et al. In vivo investigation of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii burn infections using bioluminescence imaging [J]. Vis Exp,2017,122:54997. |
48 | ALBA M N, GERENUTTI M, YOSHIDA V M, et al. Clinical comparison of salicylic acid peel and LED-laser phototherapy for the treatment of acne vulgaris in teenagers[J]. J Cosmet Laser Ther, 2017, 19(1): 49-53. |
49 | PAPAGEORGIOU P, KATSAMBAS A, CHU A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris[J]. Br J Dermatol, 2000, 142(5): 973-978. |
50 | SOUKOS N S, STULTZ J, ABERNETHY A D, et al. Phototargeting human periodontal pathogens in vivo [J]. Lasers Med Sci, 2015, 30(3): 943-952. |
51 | LEWIS A J, ZHANG X H, GRIEPENTROG J E,et al. Blue light enhances bacterial clearance and reduces organ injury during sepsis [J]. Crit Care Med,2018,46(8):e779-e787. |
52 | GANZ R A, VIVEIROS J, AHMAD A, et al. Helicobacter pylori in patients can be killed by visible light[J]. Lasers Surg Med, 2005, 36(4): 260-265. |
53 | BACHE S E, MACLEAN M, GETTINBY G, et al. Universal decontamination of hospital surfaces in an occupied inpatient room with a continuous 405 nm light source[J]. J Hosp Infect, 2018, 98(1): 67-73. |
[1] | 曲海新,袁二伟,郭卫平,张雅静,马文霞,吴丹. 木犀草素抑制ROS/TXNIP/NLRP3信号通路激活对小鼠急性呼吸窘迫综合征的改善作用[J]. 吉林大学学报(医学版), 2022, 48(3): 676-683. |
[2] | 刘依侬,张强,徐立. 阿托伐他汀对Ox-LDL/β2GPⅠ/anti-β2GPⅠ诱导的血管内皮功能紊乱的改善作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(2): 317-323. |
[3] | 周阳,米旭光,蒲文星,汪文涛,景猛,孟繁凯. 褪黑素对过氧化氢诱导人神经母细胞瘤SH-SY5Y细胞氧化应激的改善作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(2): 340-347. |
[4] | 毛丹,李志爽,程佳新,侯平. 参仙升脉口服液对病态窦房结综合征小鼠ROS表达的影响和对HCN4离子通道的调控作用[J]. 吉林大学学报(医学版), 2021, 47(6): 1353-1361. |
[5] | 杨颖, 赵伟, 吕丹. C19ORF12对胃癌MKN45细胞增殖和化疗药敏感性的影响及其机制[J]. 吉林大学学报(医学版), 2021, 47(3): 687-693. |
[6] | 于雷, 王策, 韩冰, 李鑫, 韩雨辰, 孙宇莹, 郭湘舒, 刘威武, 王志成. 线粒体靶向KillerRed增强辐射诱导HeLa细胞自噬作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(04): 693-698. |
[7] | 文庆一, 焦苗苗, 谢潇, 彭敬予, 董凤歌, 魏雪, 杨明. 双硫仑联合顺铂对三阴性乳腺癌MDA-MB-231细胞的增殖抑制作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(03): 523-529. |
[8] | 娄婷婷, 黄清霞, 李香艳, 赵大庆. 人参提取物对棕榈酸诱导心肌细胞损伤的保护作用及其机制[J]. 吉林大学学报(医学版), 2019, 45(06): 1248-1255. |
[9] | 池明, 高玲, 吴巍巍, 张博儒, 王雷. 黄连素对脂多糖诱导的小鼠急性肺损伤和炎症的改善作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(06): 1194-1199. |
[10] | 李鑫, 马云飞, 唐庚, 韦麒, 纪红池, 田嘉安, 申延男, 王志成. 线粒体靶向KillerRed诱导的ROS增强辐射对HeLa细胞的增殖抑制作用[J]. 吉林大学学报(医学版), 2018, 44(04): 718-723. |
[11] | 杨易, 包康达, 周彦兵, 袁超, 李勇, 刘晓明, 徐金瑞. Wnt5a对人肺腺癌A549细胞凋亡的调控作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(02): 229-234. |
[12] | 许雪梅, 黄笑夏, 金瓯, 张海邻, 时洪雪. 表皮生长因子对缺氧缺糖模型大鼠骨骼肌细胞氧化损伤的保护作用[J]. 吉林大学学报(医学版), 2018, 44(02): 310-314. |
[13] | 孙旭, 孟宪瑛, 王瑶琪, 杨帅, 逄仁柱, 李勇, 石亮. 光动力疗法的抗肿瘤作用及其机制的研究进展[J]. 吉林大学学报(医学版), 2018, 44(01): 200-204. |
[14] | 王玥, 刘畅, 朴仙姬, 张冬云, 孟令旗, 王浩, 王加茹, 罗英花, 孙虎男, 金成浩. 四溴苯三唑对人结肠癌SW480细胞凋亡的诱导作用及其机制[J]. 吉林大学学报(医学版), 2017, 43(06): 1148-1154. |
[15] | 王丽萍, 王建辉, 李树民, 杨秀红. N-乙酰半胱氨酸通路对AGT-REN双转基因高血压小鼠心肌成纤维细胞中电导钙激活钾离子通道蛋白表达的影响及其意义[J]. 吉林大学学报(医学版), 2017, 43(05): 881-886. |
|