1 |
马 翔, 唐成林, 吴梦佳, 等. microRNA调节肌肉萎缩作用机制的研究进展[J]. 中国康复理论与实践, 2019, 25(4): 434-438.
|
2 |
WANG Y N, LIU Q, QUAN H L, et al. Nutraceuticals in the prevention and treatment of the muscle atrophy[J]. Nutrients, 2021, 13(6): 1914.
|
3 |
HUANG Y, WU B L, SHEN D Z, et al. Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8)[J].Int J Biol Sci,2021,17(1):151-162.
|
4 |
VAN DER MEER P, VAN DER WAL H H, MELENOVSKY V. Mitochondrial function, skeletal muscle metabolism, and iron deficiency in heart failure[J]. Circulation, 2019, 139(21): 2399-2402.
|
5 |
LU J S, YANG J Z, ZHENG Y S, et al. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence[J]. Sci Rep, 2019, 9(1): 16130.
|
6 |
章 喻, 王利波, 戴薇薇. 糖皮质激素与铁死亡[J]. 生理科学进展, 2022, 53(1): 76-81.
|
7 |
ZHENG Y, LIU T, LI Q, et al. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging[J]. Aging, 2021, 13(11): 15044-15060.
|
8 |
LIU B X, ZHAO Y, YANG S Y. An autophagy-related long non-coding RNA prognostic signature for patients with lung squamous carcinoma based on bioinformatics analysis[J]. Int J Gen Med, 2021, 14: 6621-6637.
|
9 |
BERTERO E, NICKEL A, KOHLHAAS M, et al. Loss of mitochondrial Ca2+ uniporter limits inotropic reserve and provides trigger and substrate for arrhythmias in Barth syndrome cardiomyopathy[J]. Circulation, 2021, 144(21): 1694-1713.
|
10 |
LIANG R, DONG W, SHEN X P, et al. Modeling myotonic dystrophy 1 in C2C12 myoblast cells[J]. J Vis Exp, 2016(113): 54078.
|
11 |
高振罡, 章晓云, 蒋 文. 铁死亡在骨关节炎中的作用机制及其中医药干预研究进展[J]. 中国组织工程研究, 2024, 28(14): 2242-2247.
|
12 |
NEUBERT P, WEICHSELBAUM A, REITINGER C, et al. HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting[J]. Autophagy, 2019, 15(11): 1899-1916.
|
13 |
PETRILLO S, PIETRAFUSA N, TRIVISANO M, et al. Imbalance of systemic redox biomarkers in children with epilepsy: role of ferroptosis[J]. Antioxidants, 2021, 10(8): 1267.
|
14 |
SUN Y T, CHEN P, ZHAI B T, et al. The emerging role of ferroptosis in inflammation[J]. Biomedecine Pharmacother, 2020, 127: 110108.
|
15 |
HIRSCHHORN T, STOCKWELL B R. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133: 130-143.
|
16 |
STOCKWELL B R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421.
|
17 |
SHI Z Z, TAO H, FAN Z W, et al. Prognostic and immunological role of key genes of ferroptosis in pan-cancer[J]. Front Cell Dev Biol, 2021, 9: 748925.
|
18 |
LIU X M, MA Y M, LUO L J, et al. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway[J]. Phytomedicine, 2022, 96: 153894.
|
19 |
YE Y Z, CHEN A, LI L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification[J].Kidney Int,2022,102(6): 1259-1275.
|
20 |
ZHANG X Y, ZHENG C T, GAO Z Q, et al. SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis[J]. Cardiovasc Drugs Ther, 2022, 36(3): 437-447.
|
21 |
KOPPULA P, ZHUANG L, GAN B Y. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
|
22 |
IIDA Y, OKAMOTO-KATSUYAMA M, MARUOKA S, et al. Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane[J]. Oncol Lett, 2021, 21(1): 71.
|
23 |
WEI X, YI X, ZHU X H, et al. Posttranslational modifications in ferroptosis[J]. Oxid Med Cell Longev, 2020, 2020: 8832043.
|
24 |
杨铭钰, 杨 震, 任万华. 铁死亡在胆管癌中的作用机制[J]. 临床肝胆病杂志, 2022, 38(4): 951-955.
|
25 |
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nat Chem Biol,2017,13(1):91-98.
|
26 |
HE S X, LI R, PENG Y M, et al. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1717-1730.
|
27 |
吴珑婕, 韩 培, 郝 蕴, 等. 基于超高效液相色谱-质谱联用的代谢组学技术对人纤维肉瘤HT1080细胞铁死亡代谢特征的分析[J]. 郑州大学学报(医学版), 2022, 57(3): 297-302.
|
28 |
杨岚婷, 徐 涛, 杨福情, 等. 转铁蛋白受体对铁过载所致大鼠心肌细胞铁死亡的作用及其机制[J]. 解放军医学杂志, 2022, 47(8): 781-788.
|
29 |
李永平, 梁炳生. MyoD肌形成作用机制研究进展[J]. 国际骨科学杂志, 2007, 28(1): 37-40.
|
30 |
LAHMANN I, BRÖHL D, ZYRIANOVA T, et al. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells[J]. Genes Dev, 2019, 33(9/10): 524-535.
|