吉林大学学报(医学版) ›› 2022, Vol. 48 ›› Issue (6): 1635-1643.doi: 10.13481/j.1671-587X.20220633
收稿日期:
2022-06-23
出版日期:
2022-11-28
发布日期:
2022-12-07
通讯作者:
莽靖,徐忠信
E-mail:mangjing@jlu.edu.cn;xuzhongxin@jlu.edu.cn
作者简介:
石晓花(1993-),女,新疆维吾尔自治区哈密市人,在读博士研究生,主要从事缺血性脑损伤基础和临床方面的研究。
基金资助:
Received:
2022-06-23
Online:
2022-11-28
Published:
2022-12-07
摘要:
脑缺血再灌注损伤是缺血性脑卒中关键病理过程。脑缺血再灌注损伤涉及坏死、自噬、凋亡、焦亡和铁死亡等多种神经元死亡模式。这些不同形式的细胞死亡模式在脑缺血再灌注损伤的不同时程发挥重要作用。对脑缺血再灌注损伤过程中细胞不同形式死亡模式的发生及其相互作用机制进行深入研究,可能为提高缺血性卒中临床防治提供新的干预靶点。现对脑缺血再灌注损伤过程中多种细胞死亡模式的相关研究进行综述,旨在为脑缺血再灌注损伤过程中细胞不同形式死亡模式及其相互作用机制研究提供新思路。
中图分类号:
石晓花,莽靖,徐忠信. 脑缺血再灌注损伤细胞死亡模式的研究进展Research progress in cell death modes of cerebral ischemia-reperfusion injury[J]. 吉林大学学报(医学版), 2022, 48(6): 1635-1643.
1 | FEIGIN V L, STARK B A B A, JOHNSON C O,et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. |
2 | FEIGIN V L, LAWES C M M, BENNETT D A,et al. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century[J]. Lancet Neurol, 2003, 2(1): 43-53. |
3 | PUIG B, BRENNA S, MAGNUS T. Molecular communication of a dying neuron in stroke[J]. Int J Mol Sci, 2018, 19(9): 2834. |
4 | WU M Y, YIANG G T, LIAO W T, et al. Current mechanistic concepts in ischemia and reperfusion injury[J].Cell Physiol Biochem,2018,46(4):1650-1667. |
5 | ELTZSCHIG H K, ECKLE T. Ischemia and reperfusion: from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. |
6 | GONG L L, TANG Y W, AN R, et al. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways[J]. Cell Death Dis, 2017, 8(10): e3080. |
7 | KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257. |
8 | ALUVILA S, MANDAL T, HUSTEDT E, et al. Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers[J]. J Biol Chem, 2014, 289(5): 2537-2551. |
9 | SALVADOR-GALLEGO R, MUND M, COSENTINO K, et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores[J].EMBO J, 2016, 35(4): 389-401. |
10 | LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4): 479-489. |
11 | GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. |
12 | GALLUZZI L, BLOMGREN K, KROEMER G. Mitochondrial membrane permeabilization in neuronal injury[J]. Nat Rev Neurosci, 2009, 10(7): 481-494. |
13 | VERHAGEN A M, EKERT P G, PAKUSCH M,et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins[J]. Cell, 2000, 102(1): 43-53. |
14 | XING F Y, LIU Y R, DONG R F, et al. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a[J]. Exp Anim, 2021, 70(1): 126-136. |
15 | JIANG R, LIAO J, YANG M C, et al. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK[J]. Ann Transl Med, 2020, 8(8): 548. |
16 | LAVRIK I N, KRAMMER P H. Regulation of CD95/fas signaling at the DISC[J]. Cell Death Differ, 2012, 19(1): 36-41. |
17 | MAHDIZADEH S J, THOMAS M, ERIKSSON L A. Reconstruction of the fas-based death-inducing signaling complex (DISC) using a protein-protein docking meta-approach[J]. J Chem Inf Model,2021,61(7):3543-3558. |
18 | ROSENBAUM D M, GUPTA G, D’AMORE J,et al. Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia[J].J Neurosci Res,2000,61(6): 686-692. |
19 | CHEN B L, WU Z Z, XU J, et al. Calreticulin binds to fas ligand and inhibits neuronal cell apoptosis induced by ischemia-reperfusion injury[J]. Biomed Res Int, 2015, 2015: 895284. |
20 | ZHANG J F, SHI L L, ZHANG L, et al. microRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through fas/FasL pathway[J]. J Mol Neurosci, 2016, 58(4): 507-516. |
21 | WANG G H, LAN R, ZHEN X D, et al. An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats:up-regulation of Bcl-2 and down-regulation of Bax and caspase-3[J]. J Ethnopharmacol, 2014, 154(1): 156-162. |
22 | SHABANZADEH A P, D’ONOFRIO P M, MONNIER P P,et al.Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke[J]. Cell Death Dis, 2015, 6(11): e1967. |
23 | XU D D, KONG T T, CHENG B H, et al. Orexin-A alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress-mediated apoptosis[J]. Mol Med Rep, 2021, 23(4): 266. |
24 | HATA R, GILLARDON F, MICHAELIDIS T M,et al.Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury[J]. Metab Brain Dis, 1999, 14(2): 117-124. |
25 | YUAN Y J, GUO Q L, YE Z, et al. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway[J]. Brain Res, 2011, 1367: 85-93. |
26 | BREDESEN D E, RAO R V, MEHLEN P. Cell death in the nervous system[J]. Nature, 2006, 443(7113): 796-802. |
27 | LIU Y P, LIU T, LEI T T, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)[J]. Int J Mol Med, 2019, 44(3): 771-786. |
28 | CHRISTOFFERSON D E, YUAN J Y. Necroptosis as an alternative form of programmed cell death[J]. Curr Opin Cell Biol, 2010, 22(2): 263-268. |
29 | LI C, MU N, GU C H, et al. Metformin mediates cardioprotection against aging-induced ischemic necroptosis[J]. Aging Cell, 2020, 19(2): e13096. |
30 | MOERKE C, JACO I, DEWITZ C, et al. The anticonvulsive Phenhydan® suppresses extrinsic cell death[J]. Cell Death Differ, 2019, 26(9): 1631-1645. |
31 | NEWTON K, DUGGER D L, MALTZMAN A,et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury[J]. Cell Death Differ, 2016, 23(9): 1565-1576. |
32 | DEGTEREV A, HITOMI J, GERMSCHEID M,et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008,4(5): 313-321. |
33 | NAITO M G, XU D C, AMIN P, et al. Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke[J]. Proc Natl Acad Sci U S A, 2020, 117(9): 4959-4970. |
34 | DENG X X, LI S S, SUN F Y. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling[J]. Aging Dis, 2019, 10(4): 807-817. |
35 | YANG J P, ZHAO Y Y, ZHANG L, et al. RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex[J]. Cereb Cortex, 2018, 28(7): 2622-2635. |
36 | PARZYCH K R, KLIONSKY D J. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473. |
37 | GALLUZZI L, BAEHRECKE E H, BALLABIO A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811-1836. |
38 | ITAKURA E, MIZUSHIMA N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins[J]. Autophagy, 2010,6(6): 764-776. |
39 | CHEN Y Q, KLIONSKY D J. The regulation of autophagy-unanswered questions[J]. J Cell Sci, 2011, 124(Pt 2): 161-170. |
40 | BURMAN C, KTISTAKIS N T. Regulation of autophagy by phosphatidylinositol 3-phosphate[J]. FEBS Lett, 2010, 584(7): 1302-1312. |
41 | ZHANG X, WEI M P, FAN J H, et al. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons[J]. Autophagy, 2021, 17(6): 1519-1542. |
42 | BAEK S H, NOH A R, KIM K A, et al. Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage[J]. Stroke, 2014, 45(8): 2438-2443. |
43 | WANG M, LI Y J, DING Y, et al. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2016, 53(2): 932-943. |
44 | ZHANG Y, ZHANG Y, JIN X F, et al. The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy[J]. Molecules, 2019, 24(9): 1838. |
45 | GOODALL M L, FITZWALTER B E, ZAHEDI S, et al. The autophagy machinery controls cell death switching between apoptosis and necroptosis[J]. Dev Cell, 2016, 37(4): 337-349. |
46 | SUN Y M, ZHANG T, ZHANG Y, et al. Ischemic postconditioning alleviates cerebral ischemia-reperfusion injury through activating autophagy during early reperfusion in rats[J]. Neurochem Res, 2018, 43(9): 1826-1840. |
47 | YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. |
48 | HE W T, WAN H Q, HU L C, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12): 1285-1298. |
49 | SBORGI L, RÜHL S, MULVIHILL E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J, 2016, 35(16): 1766-1778. |
50 | SHI J J, ZHAO Y, WANG Y P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521): 187-192. |
51 | ROGERS C, FERNANDES-ALNEMRI T, MAYES L,et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death[J]. Nat Commun, 2017, 8: 14128. |
52 | HOU J W, ZHAO R C, XIA W Y, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol, 2020, 22(10): 1264-1275. |
53 | ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020,368(6494): eaaz7548. |
54 | FRANKE M, BIEBER M, KRAFT P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice[J]. Brain Behav Immun, 2021, 92: 223-233. |
55 | RAN Y Y, SU W, GAO F H, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF- κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2021, 2021: 1552127. |
56 | HU J, ZENG C, WEI J, et al. The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis[J]. Phytomedicine, 2020, 76: 153251. |
57 | WANG K K, SUN Z Z, RU J N, et al. Ablation of GSDMD improves outcome of ischemic stroke through blocking canonical and non-canonical inflammasomes dependent pyroptosis in microglia[J]. Front Neurol, 2020, 11: 577927. |
58 | LYU Z K, CHAN Y J, LI Q Y, et al. Destructive effects of pyroptosis on homeostasis of neuron survival associated with the dysfunctional BBB-glymphatic system and amyloid-beta accumulation after cerebral ischemia/reperfusion in rats[J]. Neural Plast, 2021, 2021: 4504363. |
59 | DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
60 | DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
61 | LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. |
62 | TANG D L, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. |
63 | URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-185. |
64 | ZHOU Y, LIAO J, MEI Z G, et al. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke[J]. Oxid Med Cell Longev, 2021, 2021: 9991001. |
65 | DIETRICH R B, BRADLEY W G. Iron accumulation in the basal Ganglia following severe ischemic-anoxic insults in children[J].Radiology,1988,168(1): 203-206. |
66 | LI G D, LI X X, DONG J J, et al. Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis[J]. Front Neurol, 2021, 12: 619043. |
67 | HANSON L R, ROEYTENBERG A, MARTINEZ P M, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke[J].J Pharmacol Exp Ther,2009,330(3): 679-686. |
68 | LAN B, GE J W, CHENG S W, et al. Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats[J]. J Integr Med, 2020,18(4): 344-350. |
69 | TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. |
70 | LI H, ZHU H, XU C J, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998, 94(4): 491-501. |
71 | WALLACH D, KANG T B, DILLON C P, et al. Programmed necrosis in inflammation: toward identification of the effector molecules[J]. Science, 2016, 352(6281): aaf2154. |
[1] | 刘东慧,张明溪,付文亮,付秀美,宋成军,陈志宏. 丝胶对高糖所致足细胞损伤和JNK信号通路的影响[J]. 吉林大学学报(医学版), 2022, 48(6): 1403-1410. |
[2] | 刘云,朱琳琦,邵世和. 环状RNA hsa_circ_0009735对胃癌细胞上皮间质转化、细胞周期和自噬的影响[J]. 吉林大学学报(医学版), 2022, 48(6): 1498-1509. |
[3] | 谢先顺,王伟,蒋海兵. miR-431-3p对胃癌细胞增殖和凋亡的影响及其靶向调控CTDP1基因表达机制[J]. 吉林大学学报(医学版), 2022, 48(6): 1555-1565. |
[4] | 武兵兵,张爱平,赵信科,李应东,刘凯. 当归红芪超滤物对X射线引起人脐静脉内皮细胞损伤的保护作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1139-1147. |
[5] | 杜雪纯,李保胜,乔树伟,欧燕珍,李珍,孟维艳. 牙龈卟啉单胞菌脂多糖对巨噬细胞中铁死亡相关因子表达水平的影响[J]. 吉林大学学报(医学版), 2022, 48(5): 1148-1155. |
[6] | 孙红霞,刘春旭,安学俊,崔光华,王靖宇,佟双喜,杨晓秋. 北五味子多糖对人膀胱癌T24细胞增殖和凋亡的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1216-1222. |
[7] | 张蒨,李静. 过表达TLR4基因对胃癌细胞自噬的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1238-1246. |
[8] | 廖源,王开举,李浩僡,陈惠萍,李选逸,黄勇. 神经肽PACAP27抑制线粒体依赖性细胞凋亡途径对环磷酰胺所致大鼠睾丸损伤的改善作用[J]. 吉林大学学报(医学版), 2022, 48(5): 1266-1275. |
[9] | 袁育珺,杨秀玲,胡志坚,张素梅. 中药靛玉红衍生物E804对肺癌A549细胞增殖、凋亡和分化的影响及其作用机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1276-1283. |
[10] | 郎庆旭,牛雪霜,杨凯文,张韧,王思腾,祖米热提古丽·吾买尔null,王珍琦. 丁酸钠联合电离辐射对肺癌A549细胞凋亡的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(4): 915-921. |
[11] | 汪文涛,米旭光,周阳,蒲文星,高佳旭,景猛,孟繁凯. 骨髓间充质干细胞来源外泌体诱导自噬对MPP+抑制SH-SY5Y细胞存活的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 606-614. |
[12] | 李官虎,郎庆旭,刘纯岩,刘沁,耿梦柔,李晓倩,王珍琦. 丙戊酸联合X射线照射对乳腺癌MDA-MB-231细胞增殖的抑制作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 622-629. |
[13] | 曹秋婷,韩竞春,张晓飞. 沉默解旋酶BLM基因对结直肠癌细胞伊立替康化疗敏感性的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 657-667. |
[14] | 刘翠兰,胡凤爱,刘晶,王丹,邱长云,柳敦江,赵娣. 脂联素受体激动剂AdiopRon对胶质瘤细胞生物学行为的影响及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 702-710. |
[15] | 杨明星,董文,李冀. 贝母素乙对肺癌A549细胞凋亡的诱导作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 711-717. |
|