吉林大学学报(医学版) ›› 2024, Vol. 50 ›› Issue (1): 280-287.doi: 10.13481/j.1671-587X.20240135
• 综述 • 上一篇
收稿日期:
2022-10-14
出版日期:
2024-01-28
发布日期:
2024-01-31
通讯作者:
陈艳
E-mail:chenyanfeihong0906@163.com
作者简介:
张 灿(1996-),女,山东省济宁市人,在读硕士研究生,主要从事神经调控治疗胃肠道疾病方面的研究。
基金资助:
Received:
2022-10-14
Online:
2024-01-28
Published:
2024-01-31
Contact:
Yan CHEN
E-mail:chenyanfeihong0906@163.com
摘要:
帕金森病(PD)患者胃肠动力障碍发生在疾病的早期阶段,甚至在运动症状出现前阶段。胃肠动力障碍是胃肠功能障碍中的一种,不仅影响药物的吸收,使PD患者的病程恶化,而且严重影响患者的生活质量。因此,寻找新的治疗靶点以减轻PD诱导的胃肠道动力障碍,对改善PD患者的病程进展和生活质量至关重要。胃肠动力功能高度依赖于肠道健康和调控胃肠运动的中枢神经。健康的肠道与肠道屏障的完整性、肠道菌群、神经炎症及负责胃肠道收缩和舒张肠道神经元的正常功能有密切关联,而PD患者的肠道功能均受到一定程度的损害。现对肠道神经系统、中枢神经系统和肠道微生物等在PD患者胃肠动力障碍发生发展过程中的影响进行综述,并总结目前可用的治疗方法及其局限性,旨在为PD患者胃肠动力障碍的治疗提供新的思路。
中图分类号:
张灿,陈艳. 帕金森病胃肠动力障碍发病机制和治疗的研究进展[J]. 吉林大学学报(医学版), 2024, 50(1): 280-287.
Can ZHANG,Yan CHEN. Research progress in pathogenesis and treatment of gastrointestinal motility disorders in Parkinson’s disease[J]. Journal of Jilin University(Medicine Edition), 2024, 50(1): 280-287.
1 | HAN M N, FINKELSTEIN D I, MCQUADE R M, et al. Gastrointestinal dysfunction in Parkinson’s disease: current and potential therapeutics[J]. J Pers Med, 2022, 12(2): 144. |
2 | ALBUQUERQUE J C S, MENDES T S, BRANDÃO M G S A, et al. Structural bases of gastrointestinal motility changes in Parkinson’s disease: study in rats[J].Braz Arch Dig Surg,2021,33(3):e1548. |
3 | NEMADE D, SUBRAMANIAN T, SHIVKUMAR V. An update on medical and surgical treatments of Parkinson’s disease[J]. Aging Dis, 2021, 12(4): 1021-1035. |
4 | WARNECKE T, SCHÄFER K H, CLAUS I, et al. Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management[J]. NPJ Parkinsons Dis, 2022, 8(1): 31. |
5 | SAFARPOUR D, SHARZEHI K, PFEIFFER R F. Gastrointestinal dysfunction in Parkinson’s disease[J]. Drugs, 2022, 82(2): 169-197. |
6 | CUNNANE S C, TRUSHINA E, MORLAND C,et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609-633. |
7 | ANDERSON G, NOORIAN A R, TAYLOR G, et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease[J].Exp Neurol,2007,207(1): 4-12. |
8 | SINGARAM C, ASHRAF W, GAUMNITZ E A,et al. Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation[J]. Lancet, 1995, 346(8979): 861-864. |
9 | GHAISAS S, LANGLEY M R, PALANISAMY B N, et al. MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gut-microbiome changes of Parkinson’s disease[J]. Neurotoxicology, 2019, 75: 186-199. |
10 | NAKAMORI H, NODA K, MITSUI R, et al. Role of enteric dopaminergic neurons in regulating peristalsis of rat proximal colon[J]. Neurogastroenterol Motil, 2021, 33(9): e14127. |
11 | SINEN O, ÖZKAN A, AĞAR A,et al.Neuropeptide-S prevents 6-OHDA-induced gastric dysmotility in rats[J]. Brain Res, 2021, 1762: 147442. |
12 |
GIANCOLA F, TORRESAN F, REPOSSI R, et al. Downregulation of neuronal vasoactive intestinal polypeptide in Parkinson’s disease and chronic constipation[J]. Neurogastroenterol Motil,2017,29(5).DOI:10.1111/nmo.12995 .
doi: 10.1111/nmo.12995 |
13 | VERGNOLLE N, CIRILLO C. Neurons and glia in the enteric nervous system and epithelial barrier function[J]. Physiology, 2018, 33(4): 269-280. |
14 | CLAIREMBAULT T, KAMPHUIS W, LECLAIR-VISONNEAU L, et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease[J]. J Neurochem, 2014, 130(6): 805-815. |
15 | BENVENUTI L, D’ANTONGIOVANNI V, PELLEGRINI C, et al. Enteric glia at the crossroads between intestinal immune system and epithelial barrier: implications for parkinson disease[J]. Int J Mol Sci, 2020, 21(23): 9199. |
16 | NAIR A T, RAMACHANDRAN V, JOGHEE N M, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review[J]. J Neurogastroenterol Motil, 2018, 24(1): 30-42. |
17 | PEREZ-PARDO P, GROBBEN Y, WILLEMSEN-SEEGERS N, et al. Pharmacological validation of TDO as a target for Parkinson’s disease[J]. FEBS J, 2021, 288(14): 4311-4331. |
18 | ISOOKA N, MIYAZAKI I, ASANUMA M. Glial cells as possible targets of neuroprotection through neurotrophic and antioxidative molecules in the central and enteric nervous systems in Parkinson’s disease[J]. Acta Med Okayama, 2021, 75(5): 549-556. |
19 | GANG C, DU Y Z, XUE L, et al. Lower GDNF serum level is a possible risk factor for constipation in patients with parkinson disease: a case-control study[J]. Front Neurol, 2021, 12: 777591. |
20 | KUJAWSKA M, JODYNIS-LIEBERT J. What is the evidence that Parkinson’s disease is a prion disorder, Which originates in the gut?[J]. Int J Mol Sci, 2018, 19(11): 3573. |
21 | GREENE J G. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson’s disease[J]. Antioxid Redox Signal, 2014, 21(4): 649-667. |
22 | CHALLIS C, HORI A, SAMPSON T R,et al.Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice[J]. Nat Neurosci, 2020, 23(3): 327-336. |
23 | ANSELMI L, TOTI L, BOVE C, et al. A nigro-vagal pathway controls gastric motility and is affected in a rat model of Parkinsonism[J].Gastroenterology,2017,153(6): 1581-1593. |
24 | YANG Y L, RAN X R, LI Y, et al. Expression of dopamine receptors in the lateral hypothalamic nucleus and their potential regulation of gastric motility in rats with lesions of bilateral substantia nigra[J]. Front Neurosci, 2019, 13: 195. |
25 | CHIU W H, KOVACHEVA L, MUSGROVE R E,et al.α-Synuclein-induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms[J]. Sci Adv, 2021, 7(11): eabd3994. |
26 | SAMPSON T R, DEBELIUS J W, THRON T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J]. Cell, 2016, 167(6): 1469-1480. |
27 | KESHAVARZIAN A, GREEN S J, ENGEN P A,et al. Colonic bacterial composition in Parkinson’s disease[J]. Mov Disord, 2015, 30(10): 1351-1360. |
28 | YEMULA N, DIETRICH C, DOSTAL V, et al. Parkinson’s disease and the gut: symptoms, nutrition, and microbiota[J]. J Parkinsons Dis, 2021,11(4): 1491-1505. |
29 | LIN C H, CHEN C C, CHIANG H L, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease[J]. J Neuroinflammation, 2019, 16(1): 129. |
30 | WANG Q, LUO Y Q, CHAUDHURI KRAY, et al. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options[J]. Brain, 2021, 144(9): 2571-2593. |
31 | VISCARDI L H, IMPARATO D O, BORTOLINI M C,et al. Ionotropic receptors as a driving force behind human synapse establishment[J]. Mol Biol Evol, 2021, 38(3): 735-744. |
32 | PESCE M, CARGIOLLI M, CASSARANO S, et al. Diet and functional dyspepsia: clinical correlates and therapeutic perspectives[J]. World J Gastroenterol, 2020, 26(5): 456-465. |
33 | ZUBCEVIC J, RICHARDS E M, YANG T, et al. Impaired autonomic nervous system-microbiome circuit in hypertension[J]. Circ Res, 2019, 125(1): 104-116. |
34 | POLITIS M, NICCOLINI F. Serotonin in Parkinson’s disease[J]. Behav Brain Res, 2015, 277: 136-145. |
35 | CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease[J]. Mov Disord, 2020, 35(7): 1208-1217. |
36 | ROMO-VAQUERO M, FERNÁNDEZ-VILLALBA E, GIL-MARTINEZ A L, et al. Urolithins: potential biomarkers of gut dysbiosis and disease stage in Parkinson’s patients[J]. Food Funct, 2022, 13(11): 6306-6316. |
37 | ELFIL M, KAMEL S, KANDIL M, et al. Implications of the gut microbiome in Parkinson’s disease[J]. Mov Disord, 2020, 35(6): 921-933. |
38 | SHINDE T, PERERA A P, VEMURI R, et al. Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases[J].Eur J Nutr,2020,59(8): 3669-3689. |
39 | LOUIS P, HOLD G L, FLINT H J. The gut microbiota, bacterial metabolites and colorectal cancer[J]. Nat Rev Microbiol, 2014, 12(10): 661-672. |
40 | JIANG X P, GU S S, LIU D, et al. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades[J]. Front Microbiol, 2018, 9: 2425. |
41 | KLANN E M, DISSANAYAKE U, GURRALA A, et al. The gut-brain axis and its relation to Parkinson’s disease: a review[J]. Front Aging Neurosci, 2021, 13: 782082. |
42 | DUTTON J S, HINMAN S S, KIM R, et al. Primary cell-derived intestinal models: recapitulating physiology[J].Trends Biotechnol,2019,37(7): 744-760. |
43 | ALMANSOUR K, TAVERNER A, TURNER J R, et al. An intestinal paracellular pathway biased toward positively-charged macromolecules[J]. J Control Release, 2018, 288: 111-125. |
44 | CHUNG J Y, JEONG J H, SONG J. Resveratrol modulates the gut-brain axis: focus on glucagon-like peptide-1, 5-HT, and gut microbiota[J]. Front Aging Neurosci, 2020, 12: 588044. |
45 | SONG K H, JUNG H K, KIM H J, et al. Clinical practice guidelines for irritable bowel syndrome in Korea, 2017 revised edition[J]. J Neurogastroenterol Motil, 2018, 24(2): 197-215. |
46 | WANG Z N, ZHAO Y Z. Gut microbiota derived metabolites in cardiovascular health and disease[J]. Protein Cell, 2018, 9(5): 416-431. |
47 | KUAI X Y, YAO X H, XU L J, et al. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation[J]. Microb Cell Fact, 2021, 20(1): 98. |
48 | HUANG H L, XU H M, LUO Q L, et al. Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report[J]. Medicine, 2019, 98(26): e16163. |
49 | PINI A, GARELLA R, IDRIZAJ E, et al. Glucagon-like peptide 2 counteracts the mucosal damage and the neuropathy induced by chronic treatment with cisplatin in the mouse gastric fundus[J]. Neurogastroenterol Motil, 2016, 28(2): 206-216. |
50 | ZHANG Z J, HAO L, SHI M, et al. Neuroprotective effects of a GLP-2 analogue in the MPTP Parkinson’s disease mouse model[J]. J Parkinsons Dis,2021,11(2): 529-543. |
51 | FORD N A, LIU A G. The forgotten fruit: a case for consuming avocado within the traditional mediterranean diet[J]. Front Nutr, 2020, 7: 78. |
52 | QUIGLEY E M M. Nutraceuticals as modulators of gut microbiota: role in therapy[J]. Br J Pharmacol, 2020, 177(6): 1351-1362. |
53 | MOLNAR J, MALLONEE C J, STANISIC D, et al. Hidradenitis suppurativa and 1-carbon metabolism: role of gut microbiome, matrix metalloproteinases, and hyperhomocysteinemia[J]. Front Immunol, 2020, 11: 1730. |
54 | RUSCH C, BEKE M, TUCCIARONE L, et al. Mediterranean diet adherence in people with Parkinson’s disease reduces constipation symptoms and changes fecal microbiota after a 5-week single-arm pilot study[J]. Front Neurol, 2021, 12: 794640. |
55 | YAO J P, CHEN L P, XIAO X J, et al. Effectiveness and safety of acupuncture for treating functional constipation: an overview of systematic reviews[J]. J Integr Med, 2022, 20(1): 13-25. |
56 | ZENG B Y, ZHAO K C. Effect of acupuncture on the motor and nonmotor symptoms in Parkinson’s disease: a review of clinical studies[J]. CNS Neurosci Ther, 2016, 22(5): 333-341. |
57 | SONG B J, CHANG Y Y, LI Y, et al. Effects of transcutaneous electrical acupoint stimulation on the postoperative sleep quality and pain of patients after video-assisted thoracoscopic surgery: a prospective, randomized controlled trial[J]. Nat Sci Sleep, 2020, 12: 809-819. |
58 | ZHANG S, LI S, LIU Y, et al. Electroacupuncture via chronically implanted electrodes improves gastric dysmotility mediated by autonomic-cholinergic mechanisms in a rodent model of functional dyspepsia[J]. Neurogastroenterol Motil, 2018, 30(10): e13381. |
59 | LEI W, ZHAO C C, SUN J S, et al. Electroacupuncture ameliorates intestinal barrier destruction in mice with bile duct ligation-induced liver injury by activating the cholinergic anti-inflammatory pathway[J]. Neuromodulation, 2022,25(8):1122-1133. |
[1] | 李倩,康春阳,刘晓阳,王立波,陈加俊,李佳. PRKN基因复合杂合突变致青少年型帕金森病1例报告及文献复习[J]. 吉林大学学报(医学版), 2024, 50(1): 248-253. |
[2] | 文晓东,王春玲,蒋媛静,周欣梅,张艺,伍媛. 乌梅总黄酮调控miR-145-3p表达对MPP+诱导SH-SY5Y细胞损伤的作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(6): 1415-1423. |
[3] | 刘川,李环,王大伟. 霍山石斛多糖对帕金森病模型小鼠脑组织氧化应激和炎症反应的影响[J]. 吉林大学学报(医学版), 2023, 49(1): 110-115. |
[4] | 范玲玲,丁书平,沈国民,胡志红,任爱红,邓博. 丘脑背内侧核损毁对帕金森病大鼠内侧前额叶皮层电活动的影响[J]. 吉林大学学报(医学版), 2022, 48(6): 1382-1388. |
[5] | 张树辉,张灿,秘晨晓,陈艳. 肠道微生物群系对炎症性肠病发生发展影响的研究进展Research progress in effect of intestinal microflora on occurrence and development of inflammatory bowel disease[J]. 吉林大学学报(医学版), 2022, 48(6): 1644-1649. |
[6] | 黄笑尘,李浩,王保华,李凯. 利多卡因对帕金森模型PC12细胞的保护作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(3): 638-647. |
[7] | 潘琪,王子珍,叶富跃,邢伟,林家汉,卢剪月,杨堃. 蛋白酶体抑制剂乳胞素对大鼠黑质多巴胺能神经元氧化损伤的作用[J]. 吉林大学学报(医学版), 2022, 48(3): 728-733. |
[8] | 韩玲娜,王春雷,常永丽,原丽,刘小静. 电损毁外侧缰核对帕金森病模型大鼠空间学习记忆功能的影响及其机制[J]. 吉林大学学报(医学版), 2021, 47(5): 1108-1115. |
[9] | 骆晓峰,李瑶,胡江,张宸豪. 栀子苷对实验性帕金森病大鼠睡眠障碍的调节作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(6): 1177-1181. |
[10] | 王春雷, 常永丽, 韩玲娜. 重复经颅直流电刺激对帕金森病模型大鼠抑郁行为的改善作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(04): 693-697. |
[11] | 韩玲娜, 王春雷, 张莉. 外侧缰核中5-HT2C受体在帕金森病模型大鼠焦虑行为中的调节作用及其机制[J]. 吉林大学学报(医学版), 2016, 42(03): 473-480. |
[12] | 王茜,张辉,刘名,李琪佳,耿丽鑫,孙明宏,田清友,张宇新. 人参皂苷Rg1对帕金森病模型小鼠黑质区FADD和FLIP表达的影响及其意义[J]. 吉林大学学报(医学版), 2014, 40(05): 962-966. |
[13] | 吕超男,刘斌,马原源,苗玉超,刘颖,张晋霞,毛文静,孙静,成晓华. 咪多吡对帕金森病模型大鼠黑质纹状体胶质细胞增生及活化的影响[J]. 吉林大学学报(医学版), 2014, 40(05): 953-957. |
[14] | 任博,孙法威,张作凤,张宇新. 丹参酮ⅡA对帕金森病模型小鼠多巴胺能神经元的保护作用及其机制[J]. 吉林大学学报(医学版), 2014, 40(05): 947-952. |
[15] | 范东艳|王苹|陈玉丙. 红景天苷与骨髓间充质干细胞联合应用对帕金森病大鼠的治疗作用[J]. J4, 2012, 38(6): 1073-1076. |
|