1 |
LU H J, LI J, YANG G D, et al. Circular RNAs in stem cells: from basic research to clinical implications[J]. Biosci Rep, 2022, 42(1): BSR20212510.
|
2 |
ZAKRZEWSKI W, DOBRZYŃSKI M, SZYMONOWICZ M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1): 68.
|
3 |
GRONTHOS S, BRAHIM J, LI W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81(8): 531-535.
|
4 |
DELLE MONACHE S, PULCINI F, SANTILLI F, et al. Hypoxia induces DPSC differentiation versus a neurogenic phenotype by the paracrine mechanism[J]. Biomedicines, 2022, 10(5): 1056.
|
5 |
IRFAN M, KIM J H, MARZBAN H, et al. The role of complement C5a receptor in DPSC odontoblastic differentiation and in vivo reparative dentin formation[J]. Int J Oral Sci, 2022, 14(1): 7.
|
6 |
MAITY J, BARTHELS D, SARKAR J, et al. Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy[J]. Cell Death Dis, 2022, 13(5): 452.
|
7 |
PATIL S, ALAMOUDI A, ZIDANE B, et al. Dose-dependent effects of melatonin on the viability, proliferation, and differentiation of dental pulp stem cells (DPSCs)[J]. J Pers Med, 2022, 12(10): 1620.
|
8 |
LOTT K, COLLIER P, RINGOR M, et al. Administration of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to induce neural differentiation of dental pulp stem cells (DPSC) isolates[J]. Biomedicines, 2023, 11(2): 255.
|
9 |
KUMAR A, RAIK S, SHARMA P, et al. Primary culture of dental pulp stem cells[J]. J Vis Exp, 2023(195): 1-16.
|
10 |
LABEDZ-MASLOWSKA A, BRYNIARSKA N, KUBIAK A, et al. Multilineage differentiation potential of human dental pulp stem cells-impact of 3D and hypoxic environment on osteogenesis in vitro [J]. Int J Mol Sci, 2020, 21(17): 6172.
|
11 |
GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
|
12 |
聂姗姗, 刘 佳, 张瑞涵, 等. 牙髓干细胞MHC分子表达与体外混合淋巴细胞的增殖[J]. 中国组织工程研究, 2014, 18(50): 8162-8167.
|
13 |
DING G, NIU J Y, LIU Y. Dental pulp stem cells suppress the proliferation of lymphocytes via transforming growth factor-β1[J]. Hum Cell, 2015, 28(2): 81-90.
|
14 |
SHEN Z S, KUANG S H, ZHANG Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126.
|
15 |
LEE S, ZHANG Q Z, KARABUCAK B, et al. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis[J]. J Dent Res, 2016, 95(11): 1274-1281.
|
16 |
OMI M, HATA M, NAKAMURA N, et al. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy[J]. J Diabetes Investig, 2016, 7(4): 485-496.
|
17 |
CAI G F, CAI G L, ZHOU H C, et al. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction[J]. Stem Cell Res Ther, 2021, 12(1): 2.
|
18 |
LIU C, HU F Q, JIAO G L, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury[J]. J Nanobiotechnol, 2022, 20(1): 65.
|
19 |
SASAKI J I, ZHANG Z, OH M, et al. VE-cadherin and anastomosis of blood vessels formed by dental stem cells[J]. J Dent Res, 2020, 99(4): 437-445.
|
20 |
ZOU T, JIANG S, DISSANAYAKA W L, et al. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling[J]. J Cell Biochem, 2019, 120(8): 13614-13624.
|
21 |
DELLE MONACHE S, MARTELLUCCI S, CLEMENTI L, et al. In vitro conditioning determines the capacity of dental pulp stem cells to function as pericyte-like cells[J]. Stem Cells Dev, 2019, 28(10): 695-706.
|
22 |
ZHOU Y, GU K, SUN F Y, et al. Comparison of the angiogenic ability between SHED and DPSC in a mice model with critical limb ischemic[J]. Tissue Eng Regen Med, 2022, 19(4): 861-870.
|
23 |
KUMAR A, YUN H M, FUNDERBURGH M L, et al. Regenerative therapy for the Cornea[J]. Prog Retin Eye Res, 2022, 87: 101011.
|
24 |
SAGHIZADEH M, KRAMEROV A A, SVENDSEN C N, et al. Concise review: stem cells for corneal wound healing[J]. Stem Cells, 2017, 35(10): 2105-2114.
|
25 |
SANGWAN V S, SHARP J A H. Simple limbal epithelial transplantation[J]. Curr Opin Ophthalmol, 2017, 28(4): 382-386.
|
26 |
LIANG L Y, LUO X H, ZHANG J, et al. Safety and feasibility of subconjunctival injection of mesenchymal stem cells for acute severe ocular burns: a single-arm study[J]. Ocul Surf, 2021, 22: 103-109.
|
27 |
NIETO-NICOLAU N, MARTÍNEZ-CONESA E M, VELASCO-GARCÍA A M, et al. Xenofree generation of limbal stem cells for ocular surface advanced cell therapy[J]. Stem Cell Res Ther, 2019, 10(1): 374.
|
28 |
WANG Y H, HU X D, YANG K, et al. Clinical outcomes of modified simple limbal epithelial transplantation for limbal stem cell deficiency in Chinese population: a retrospective case series[J]. Stem Cell Res Ther, 2021, 12(1): 259.
|
29 |
SABATER A L, PEREZ V L. Amniotic membrane use for management of corneal limbal stem cell deficiency[J]. Curr Opin Ophthalmol, 2017, 28(4): 363-369.
|
30 |
TSENG S C, PRABHASAWAT P, BARTON K, et al. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency[J]. Arch Ophthalmol, 1998, 116(4): 431-441.
|
31 |
KUSHNEREV E, SHAWCROSS S G, SOTHIRACHAGAN S, et al. Regeneration of corneal epithelium with dental pulp stem cells using a contact lens delivery system[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5192-5199.
|
32 |
TAKÁCS L, TÓTH E, BERTA A, et al. Stem cells of the adult cornea: from cytometric markers to therapeutic applications[J]. Cytometry A, 2009, 75(1): 54-66.
|
33 |
GOMES J A, GERALDES MONTEIRO B, MELO G B, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells [J]. Invest Ophthalmol Vis Sci, 2010, 51(3): 1408-1414.
|
34 |
SPILLER K L, ANFANG R R, SPILLER K J, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J]. Biomaterials, 2014, 35(15): 4477-4488.
|
35 |
徐丽娜, 何宇茜, 张 妍, 等. 角膜缘干细胞标志物的研究进展[J]. 国际眼科杂志, 2020, 20(12): 2064-2069.
|
36 |
SYED-PICARD F N, DU Y Q, LATHROP K L, et al. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration[J]. Stem Cells Transl Med, 2015, 4(3): 276-285.
|
37 |
DU Y Q, SUNDARRAJ N, FUNDERBURGH M L, et al. Secretion and organization of a cornea-like tissue in vitro by stem cells from human corneal stroma[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5038-5045.
|
38 |
WAGONER M D, BOHRER L R, ALDRICH B T, et al. Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells[J]. Biol Open, 2018, 7(5): bio032102.
|
39 |
BOSCH B M, SALERO E, NÚÑEZ-TOLDRÀ R, et al. Discovering the potential of dental pulp stem cells for corneal endothelial cell production: a proof of concept[J]. Front Bioeng Biotechnol, 2021, 9: 617724.
|
40 |
KAARNIRANTA K, BLASIAK J, LITON P, et al. Autophagy in age-related macular degeneration[J]. Autophagy, 2023, 19(2): 388-400.
|
41 |
KAUR G, SINGH N K. Inflammation and retinal degenerative diseases[J]. Neural Regen Res, 2023, 18(3): 513-518.
|
42 |
MIAO Y Y, ZHAO G L, CHENG S, et al. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma[J]. Prog Retin Eye Res, 2023, 93: 101169.
|
43 |
TAN T N, WONG T Y. Diabetic retinopathy: looking forward to 2030[J]. Front Endocrinol, 2023, 13: 1077669.
|
44 |
JU W K, PERKINS G A, KIM K Y, et al. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells[J]. Prog Retin Eye Res, 2023, 95: 101136.
|
45 |
BRAY A F, CEVALLOS R R, GAZARIAN K, et al. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin[J]. Neuroscience, 2014, 280: 142-155.
|
46 |
ROOZAFZOON R, LASHAY A, VASEI M, et al. Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network[J]. Biochem Biophys Res Commun, 2015, 457(2): 154-160.
|
47 |
MEAD B, LOGAN A, BERRY M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556.
|
48 |
SAKAI K, YAMAMOTO A, MATSUBARA K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms[J]. J Clin Invest, 2012, 122(1): 80-90.
|
49 |
NOSRAT I V, WIDENFALK J, OLSON L, et al. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury[J]. Dev Biol, 2001, 238(1): 120-132.
|
50 |
MEAD B, HILL L J, BLANCH R J, et al. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma[J]. Cytotherapy, 2016, 18(4): 487-496.
|
51 |
ALSAEEDI H A, KOH A E H, LAM C, et al. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration[J]. J Photochem Photobiol B, 2019, 198: 111561.
|
52 |
MEAD B, LOGAN A, BERRY M, et al. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair[J]. Stem Cells, 2017, 35(1): 61-67.
|
53 |
MEAD B, BERRY M, LOGAN A, et al. Stem cell treatment of degenerative eye disease[J]. Stem Cell Res, 2015, 14(3): 243-257.
|