| 1 |
CHRISTENSON S A, SMITH B M, BAFADHEL M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342): 2227-2242.
|
| 2 |
COLLABORATORS G 2 C R D . Global, regional, and deaths national, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Respir Med, 2017, 5(9): 691-706.
|
| 3 |
江宇航, 梅晓峰, 贾利丹, 等. 香烟烟雾诱导慢性阻塞性肺疾病模型小鼠气道上皮屏障损伤的机制[J]. 中国病理生理杂志, 2022, 38(7): 1297-1303.
|
| 4 |
WANG L J, CHEN Q, YU Q, et al. Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease[J]. Int Immunopharmacol, 2021, 96: 107700.
|
| 5 |
BARNES P J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2016, 138(1): 16-27.
|
| 6 |
LIN Z W, XU Y F, GUAN L L, et al. Seven ferroptosis-specific expressed genes are considered as potential biomarkers for the diagnosis and treatment of cigarette smoke-induced chronic obstructive pulmonary disease[J]. Ann Transl Med, 2022, 10(6): 331.
|
| 7 |
LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
|
| 8 |
唐 香, 余善君, 李 琪, 等. 苦味受体在呼吸系统中应用的研究进展[J]. 实用药物与临床, 2023, 26(4): 370-376.
|
| 9 |
LEE R J, COHEN N A. Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2015, 15(1): 14-20.
|
| 10 |
ZHANG Y, HUANG W H, ZHENG Z M, et al. Cigarette smoke-inactivated SIRT1 promotes autophagy-dependent senescence of alveolar epithelial type 2 cells to induce pulmonary fibrosis[J]. Free Radic Biol Med, 2021, 166: 116-127.
|
| 11 |
KERTESZ Z, HARRINGTON E O, BRAZA J, et al. Agonists for bitter taste receptors T2R10 and T2R38 attenuate LPS-induced permeability of the pulmonary endothelium in vitro [J]. Front Physiol, 2022, 13: 794370.
|
| 12 |
WIEGMAN C H, MICHAELOUDES C, HAJI G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2015, 136(3): 769-780.
|
| 13 |
CHEN G H, SONG C C, PANTOPOULOS K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway[J]. Free Radic Biol Med, 2022, 180: 95-107.
|
| 14 |
KUANG F M, LIU J, TANG D L, et al. Oxidative damage and antioxidant defense in ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 586578.
|
| 15 |
LIU T, SUN L, ZHANG Y B, et al. Imbalanced GSH/ROS and sequential cell death[J]. J Biochem Mol Toxicol, 2022, 36(1): e22942.
|
| 16 |
WANG Y, BRANICKY R, NOË A, et al. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling[J]. J Cell Biol, 2018, 217(6): 1915-1928.
|
| 17 |
ZI Y W, WANG X H, ZI Y F, et al. Cigarette smoke induces the ROS accumulation and iNOS activation through deactivation of Nrf-2/SIRT3 axis to mediate the human bronchial epithelium ferroptosis[J]. Free Radic Biol Med, 2023, 200: 73-86.
|
| 18 |
DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107.
|
| 19 |
SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019, 133: 144-152.
|
| 20 |
梁佳新, 徐宝麟, 成 雨, 等. 铁死亡在肝缺血再灌注损伤中的作用[J]. 临床肝胆病杂志, 2024, 40(8): 1693-1698.
|
| 21 |
YAMADA K, ASAI K, NAGAYASU F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking[J]. BMC Pulm Med, 2016, 16: 27.
|
| 22 |
ZHANG Z X, FU C L, LIU J X, et al. Hypermethylation of the Nrf2 promoter induces ferroptosis by inhibiting the Nrf2-GPX4 axis in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 3347-3362.
|
| 23 |
SUN X J, CHEN L, HE Z Y. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease[J]. Curr Drug Metab, 2019, 20(4): 301-304.
|
| 24 |
ZHAO Z W, XU Z, CHANG J W, et al. Sodium pyruvate exerts protective effects against cigarette smoke extract-induced ferroptosis in alveolar and bronchial epithelial cells through the GPX4/Nrf2 axis[J]. J Inflamm (Lond), 2023, 20(1): 28.
|
| 25 |
JIANG W T, LIU X S, XU Y J, et al. Expression of nitric oxide synthase isoenzyme in lung tissue of smokers with and without chronic obstructive pulmonary disease[J]. Chin Med J (Engl), 2015, 128(12): 1584-1589.
|
| 26 |
石炜弘, 窦丹波, 沈若冰. 诱导型一氧化氮合酶/一氧化氮在气道炎症中的研究进展[J]. 医学综述, 2022, 28(5): 852-857.
|
| 27 |
LI J, QIU C, XU P, et al. Casticin improves respiratory dysfunction and attenuates oxidative stress and inflammation via inhibition of NF-κB in a chronic obstructive pulmonary disease model of chronic cigarette smoke-exposed rats[J]. Drug Des Devel Ther, 2020, 14: 5019-5027.
|
| 28 |
BAGCHI A K, MALIK A, AKOLKAR G, et al. Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy[J]. Antioxidants (Basel), 2021, 10(12): 1897.
|
| 29 |
COHEN N A. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis[J]. Laryngoscope, 2017, 127(1): 44-51.
|