| [1] |
VAN DE LEEMPUT J, WEN P, HAN Z. Using drosophila nephrocytes to understand the formation and maintenance of the podocyte slit diaphragm[J]. Front Cell Dev Biol, 2022, 10: 837828.
|
| [2] |
QU H, GONG X L, LIU X F, et al. Deficiency of mitochondrial glycerol 3-phosphate dehydrogenase exacerbates podocyte injury and the progression of diabetic kidney disease[J]. Diabetes, 2021, 70(6): 1372-1387.
|
| [3] |
JIN Q, LIU T T, QIAO Y, et al. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols[J]. Front Immunol, 2023, 14: 1185317.
|
| [4] |
WAN J M, KALPAGE H A, VAISHNAV A, et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation[J]. Sci Rep, 2019, 9(1): 15815.
|
| [5] |
ZHOU L L, CHEN X W, LU M Z, et al. Wnt/β- catenin links oxidative stress to podocyte injury and proteinuria[J]. Kidney Int, 2019, 95(4): 830-845.
|
| [6] |
LIU Y, HITOMI H, DIAH S, et al. Roles of Na⁺/H⁺ exchanger type 1 and intracellular pH in angiotensin Ⅱ-induced reactive oxygen species generation and podocyte apoptosis[J]. J Pharmacol Sci, 2013, 122(3): 176-183.
|
| [7] |
HERMAN-EDELSTEIN M, SCHERZER P, TOBAR A, et al. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy[J]. J Lipid Res, 2014, 55(3): 561-572.
|
| [8] |
MITROFANOVA A, MERSCHER S, FORNONI A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19(10): 629-645.
|
| [9] |
YANG Q, HU J J, YANG Y J, et al. Sirt6 deficiency aggravates angiotensin Ⅱ-induced cholesterol accumulation and injury in podocytes[J]. Theranostics, 2020, 10(16): 7465-7479.
|
| [10] |
FU Y, SUN Y, WANG M, et al. Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism[J]. Cell Metab, 2020, 32(6): 1052-1062.e8.
|
| [11] |
LI G B, KIDD J, KASPAR C, et al. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: role of ceramide accumulation in glomeruli[J]. Am J Pathol, 2020, 190(6): 1211-1223.
|
| [12] |
ZHENG T, WANG H Y, CHEN Y, et al. Src activation aggravates podocyte injury in diabetic nephropathy via suppression of FUNDC1-mediated mitophagy[J]. Front Pharmacol, 2022, 13: 897046.
|
| [13] |
CAO Y, CHEN Z W, HU J J, et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J]. Front Cell Dev Biol, 2021, 9: 769213.
|
| [14] |
FENG J, CHEN Z W, MA Y Q, et al. AKAP1 contributes to impaired mtDNA replication and mitochondrial dysfunction in podocytes of diabetic kidney disease[J]. Int J Biol Sci, 2022, 18(10): 4026-4042.
|
| [15] |
ERICHSEN L, THIMM C, BOHNDORF M, et al. Activation of the renin-angiotensin system disrupts the cytoskeletal architecture of human urine-derived podocytes[J]. Cells, 2022, 11(7): 1095.
|
| [16] |
BUTT L, UNNERSJÖ-JESS D, HÖHNE M, et al. A mathematical estimation of the physical forces driving podocyte detachment[J]. Kidney Int, 2021, 100(5): 1054-1062.
|
| [17] |
MIAO L, WEI D Y, ZHANG Y Y, et al. Effects of stromal interaction molecule 1 or Orai1 overexpression on the associated proteins and permeability of podocytes[J]. Nephrology (Carlton), 2016, 21(11): 959-967.
|
| [18] |
TAO Y, MALLET R T, MATHIS K W, et al. Store-operated Ca(2+) channel signaling: Novel mechanism for podocyte injury in kidney disease[J]. Exp Biol Med (Maywood), 2023, 248(5): 425-433.
|
| [19] |
PERICO L, CONTI S, BENIGNI A, et al. Podocyte-actin dynamics in health and disease[J]. Nat Rev Nephrol, 2016, 12(11): 692-710.
|
| [20] |
ROGACKA D. Insulin resistance in glomerular podocytes: Potential mechanisms of induction[J]. Arch Biochem Biophys, 2021, 710: 109005.
|
| [21] |
XING L N, GUO H J, MENG S X, et al. Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes[J]. Biochem Biophys Res Commun, 2021, 534: 450-456.
|
| [22] |
XU E D, YIN C Y, YI X Q, et al. Inhibition of USP15 ameliorates high-glucose-induced oxidative stress and inflammatory injury in podocytes through regulation of the Keap1/Nrf2 signaling[J]. Environ Toxicol, 2022, 37(4): 765-775.
|
| [23] |
CHEN M X, FANG Y D, GE Y, et al. The redox-sensitive GSK3β is a key regulator of glomerular podocyte injury in type 2 diabetic kidney disease[J]. Redox Biol, 2024, 72: 103127.
|
| [24] |
CHEN Z, TIAN L F, WANG L, et al. TRIM32 inhibition attenuates apoptosis, oxidative stress, and inflammatory injury in podocytes induced by high glucose by modulating the Akt/GSK-3β/Nrf2 pathway[J]. Inflammation, 2022, 45(3): 992-1006.
|
| [25] |
WANG X J, YANG J, WANG W X, et al. Decreasing REDD1 expression protects against high glucose-induced apoptosis, oxidative stress and inflammatory injury in podocytes through regulation of the AKT/GSK-3β/Nrf2 pathway[J]. Immunopharmacol Immunotoxicol, 2023, 45(5): 527-538.
|
| [26] |
XIA J J, SUN W G, DUN J J. LncRNA 1500026H17Rik knockdown ameliorates high glucose-induced mouse podocyte injuries through the miR-205-5p/EGR1 pathway[J]. Int Urol Nephrol, 2023, 55(4): 1045-1057.
|
| [27] |
ZHOU Y, LI Z L, DING L, et al. Long noncoding RNA SNHG5 promotes podocyte injury via the microRNA-26a-5p/TRPC6 pathway in diabetic nephropathy[J]. J Biol Chem, 2022, 298(12): 102605.
|
| [28] |
CHEN X W, LIU W T, XIAO J, et al. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury[J]. FASEB J, 2020, 34(10): 13300-13316.
|
| [29] |
WADIE W, EL-TANBOULY D M. Vinpocetine mitigates proteinuria and podocytes injury in a rat model of diabetic nephropathy[J]. Eur J Pharmacol, 2017, 814: 187-195.
|
| [30] |
WANG F, LI R, ZHAO L L, et al. Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy[J]. Eur J Pharmacol, 2020, 885: 173387.
|
| [31] |
XING L N, FANG J, ZHU B B, et al. Astragaloside IV protects against podocyte apoptosis by inhibiting oxidative stress via activating PPARγ-Klotho-FoxO1 axis in diabetic nephropathy[J]. Life Sci, 2021, 269: 119068.
|
| [32] |
HU J J, ZHU Z J, CHEN Z W, et al. Alteration in Rab11-mediated endocytic trafficking of LDL receptor contributes to angiotensin Ⅱ-induced cholesterol accumulation and injury in podocytes[J]. Cell Prolif, 2022, 55(6): e13229.
|
| [33] |
LU J, CHEN P P, ZHANG J X, et al. GPR43 activation-mediated lipotoxicity contributes to podocyte injury in diabetic nephropathy by modulating the ERK/EGR1 pathway[J]. Int J Biol Sci, 2022, 18(1): 96-111.
|
| [34] |
ZANG N, CUI C, GUO X H, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease[J]. iScience, 2022, 25(10): 105145.
|
| [35] |
ZUO F W, WANG Y Z, XU X L, et al. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease[J]. Metabolism, 2024, 150: 155724.
|
| [36] |
HUA W, PENG L, CHEN X M, et al. CD36-mediated podocyte lipotoxicity promotes foot process effacement[J]. Open Med (Wars), 2024, 19(1): 20240918.
|
| [37] |
CHEN Y, CHEN M, ZHU W H, et al. Morroniside attenuates podocytes lipid deposition in diabetic nephropathy: a network pharmacology, molecular docking and experimental validation study[J]. Int Immunopharmacol, 2024, 138: 112560.
|
| [38] |
SUN J S, ZHANG X Y, WANG S M, et al. Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway[J]. Diabetol Metab Syndr, 2024, 16(1): 38.
|
| [39] |
LUO Z L, CHEN Z W, ZHU Z J, et al. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis[J]. Cell Signal, 2022, 99: 110443.
|
| [40] |
CHEN Z W, LIANG W, HU J J, et al. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway[J]. Cell Prolif, 2022, 55(10): e13296.
|
| [41] |
TAO Y, YAZDIZADEH SHOTORBANI P, INMAN D, et al. Store-operated Ca(2+) entry inhibition ameliorates high glucose and ANG II-induced podocyte apoptosis and mitochondrial damage[J]. Am J Physiol Renal Physiol, 2023, 324(5): F494-F504.
|
| [42] |
CHEN H M, LIU Y, ZHANG T W, et al. Inhibition of the lncRNA 585189 prevents podocyte injury and mitochondria dysfunction by promoting hnRNP A1 and SIRT1 in diabetic nephropathy[J]. Mol Cell Endocrinol, 2023, 578: 112065.
|
| [43] |
FU J L, SHINJO T, LI Q, et al. Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy[J]. JCI Insight, 2022, 7(5): e155260.
|
| [44] |
LI X H, YANG Q L, LIU S R, et al. Mitochondria-associated endoplasmic reticulum membranes promote mitochondrial fission through AKAP1-Drp1 pathway in podocytes under high glucose conditions[J]. Exp Cell Res, 2023, 424(2): 113512.
|
| [45] |
LIU B H, WANG D J, CAO Y W, et al. MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy[J]. Eur J Pharmacol, 2022, 929: 175136.
|
| [46] |
QIN X, ZHAO Y, GONG J, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction[J]. Theranostics, 2019, 9(6): 1698-1713.
|
| [47] |
SEMENIKHINA M, STEFANENKO M, SPIRES D R, et al. Nitric-oxide-mediated signaling in podocyte pathophysiology[J]. Biomolecules, 2022, 12(6): 745.
|
| [48] |
WANG J J, FU D D, SENOUTHAI S, et al. Critical roles of PI3K/Akt/NF-κB survival axis in angiotensin Ⅱ-induced podocyte injury[J]. Mol Med Rep, 2019, 20(6): 5134-5144.
|
| [49] |
DONG D, FAN T T, JI Y S, et al. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes[J]. Int Urol Nephrol, 2019, 51(4): 755-764.
|
| [50] |
DING W F, LI X, WU W H, et al. Aliskiren inhibits angiotensin Ⅱ/angiotensin 1-7(Ang Ⅱ/Ang1-7) signal pathway in rats with diabetic nephropathy[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2018, 34(10): 891-895.
|