Journal of Jilin University(Medicine Edition) ›› 2021, Vol. 47 ›› Issue (4): 1043-1049.doi: 10.13481/j.1671-587X.20210432
• Review • Previous Articles Next Articles
Received:
2020-11-07
Online:
2021-07-28
Published:
2021-07-22
CLC Number:
1 | 施普林格·自然集团. 纳米科学与技术:现状与展望 2019 [R/OL]. [2021-04-05]. |
2 | CURRAN A D. WHO guidelines on protecting workers from potential risks of manufactured nanomaterials[J]. Occup Med, 2020, 70(7): 528. |
3 | 许亚慧, 张 华, 胡青芳, 等. 纳米二氧化硅的系统毒性及机制[J]. 中国工业医学杂志, 2019, 32(2): 116-120. |
4 | LIAO H Y, CHUNG Y T, LAI C H, et al. Sneezing and allergic dermatitis were increased in engineered nanomaterial handling workers [J]. Ind Health, 2014, 52(3): 199-215. |
5 | LIAO H Y, CHUNG Y T, LAI C H, et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials[J]. Nanotoxicology, 2014, 8(): 100-110. |
6 | 章 军. 纳米二氧化硅的心血管毒性研究[D]. 杭州: 浙江大学, 2007. |
7 | 张晓雪. 纳米二氧化硅对职业接触人群健康的影响研究[D]. 唐山:华北理工大学, 2018. |
8 | LEE J A, KIM M K, SONG J H, et al. Biokinetics of food additive silica nanoparticles and their interactions with food components[J]. Colloids Surf B Biointerfaces, 2017, 150: 384-392. |
9 | NABESHI H, YOSHIKAWA T, MATSUYAMA K, et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application [J]. Biomaterials, 2011, 32(11):2713-2724. |
10 | DU Z, ZHAO D, JING L, et al. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation [J]. Cardiovasc Toxicol, 2013, 13(3): 194-207. |
11 | DU Z, CHEN S, CUI G, et al. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation [J]. Int J Mol Med, 2019, 43(3): 1229-1240. |
12 | YANG M, JING L, WANG J, et al. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation[J]. Int J Nanomedicine, 2016, 11: 6217-6228. |
13 | NEMMAR A, ALBARWANI S, BEEGAM S, et al. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation[J]. Int J Nanomedicine, 2014, 9: 2779-2789. |
14 | FAROOQ A, WHITEHEAD D, AZZAWI M. Attenuation of endothelial-dependent vasodilator responses, induced by dye-encapsulated silica nanoparticles, in aortic vessels[J]. Nanomedicine (Lond), 2014, 9(3): 413-425. |
15 | ONODERA A, YAYAMA K, TANAKA A, et al. Amorphous nanosilica particles evoke vascular relaxation through PI3K/Akt/eNOS signaling[J]. Fundam Clin Pharmacol, 2016, 30(5): 419-428. |
16 | LI Y B, MA R, LIU X Y, et al. Endoplasmic reticulum stress-dependent oxidative stress mediated vascular injury induced by silica nanoparticles in vivo and in vitro [J]. NanoImpact, 2019, 14: 100169. |
17 | GUO C, XIA Y, NIU P, et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling[J]. Int J Nanomedicine, 2015, 10: 1463-1477. |
18 | LIU X, SUN J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways[J].Biomaterials,2010,31(32):8198-8209. |
19 | ZHOU F, LIAO F, CHEN L, et al. The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells[J]. Environ Sci Pollut Res Int, 2019, 26(2): 1911-1920. |
20 | NAPIERSKA D, QUARCK R, THOMASSEN L C J,et al. Amorphous silica nanoparticles promote monocyte adhesion to human endothelial cells: size-dependent effect[J]. Small, 2013, 9(3): 430-438. |
21 | PETRICK L, ROSENBLAT M, PALAND N, et al. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation[J]. Environ Toxicol, 2016, 31(6): 713-723. |
22 | GUO C, MA R, LIU X, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling[J]. Sci Total Environ, 2018, 631/632: 570-579. |
23 | MA R, QI Y, ZHAO X, et al. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE-/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage[J]. Part Fibre Toxicol, 2020, 17(1): 50. |
24 | GRYSHCHUK V, GALAGAN N. Silica nanoparticles effects on blood coagulation proteins and platelets[J]. Biochem Res Int, 2016, 2016: 2959414. |
25 | FENG L, YANG X, LIANG S,et al.Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway[J]. Part Fibre Toxicol, 2019, 16(1): 16. |
26 | SANTOS-MARTINEZ M J, TOMASZEWSKI K A, MEDINA C, et al. Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry[J]. Int J Nanomedicine, 2015, 10: 5107-5119. |
27 | CORBALAN J J, MEDINA C, JACOBY A, et al. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis[J]. Int J Nanomedicine, 2012, 7: 631-639. |
28 | CHAN W T, LIU C C, CHIANG CHIAU J S, et al. In vivo toxicologic study of larger silica nanoparticles in mice[J]. Int J Nanomedicine, 2017, 12: 3421-3432. |
29 | DUAN J, YU Y, LI Y, et al. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos[J]. Nanotoxicology, 2016, 10(5): 575-585. |
30 | MOHAMMADPOUR R, YAZDIMAMAGHANI M, CHENEY D L, et al. Subchronic toxicity of silica nanoparticles as a function of size and porosity[J]. J Control Release, 2019, 304: 216-232. |
31 | FENG L, NING R, LIU J, et al. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction[J]. J Hazard Mater, 2020, 391: 122206. |
32 | GUERRERO-BELTRÁN C E, BERNAL-RAMÍREZ J, LOZANO O, et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2017, 312(4): H645-H661. |
33 | DUBES V, PARPAITE T, DUCRET T, et al. Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells[J]. Toxicology, 2017, 375: 37-47. |
34 | PHAM D H, DE ROO B, NGUYEN X B, et al. Use of zebrafish larvae as a multi-endpoint platform to characterize the toxicity profile of silica nanoparticles [J]. Sci Rep, 2016, 6: 37145. |
35 | ORLANDO A, CAZZANIGA E, TRINGALI M,et al. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner[J]. Int J Nanomed, 2017, 12: 3547-3559. |
36 | POPARA J, ACCOMASSO L, VITALE E, et al. Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration [J]. Nanomedicine, 2018, 13(10): 1121-1138. |
37 | YE Y, LIU J, CHEN M, et al. In vitro toxicity of silica nanoparticles in myocardial cells[J]. Environ Toxicol Pharmacol, 2010, 29(2): 131-137. |
38 | DUAN J, YU Y, LI Y, et al. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint [J]. PLoS One, 2013, 8(4): e62087. |
39 | HOZAYEN W G, MAHMOUD A M, DESOUKY E M,et al. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats[J]. Biomed Pharmacother, 2019, 109: 2527-2538. |
40 | NEMMAR A, YUVARAJU P, BEEGAM S, et al. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles[J]. Int J Nanomedicine, 2016, 11: 919-928. |
41 | DUAN J, LIANG S, YU Y, et al. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos[J]. Nanotoxicology, 2018, 12(5): 470-484. |
42 | YANG L, YAN Q, ZHAO J, et al. The role of potassium channel in silica nanoparticle-induced inflammatory effect in human vascular endothelial cells in vitro [J]. Toxicol Lett, 2013, 223(1): 16-24. |
43 | YOSHIDA T, YOSHIOKA Y, TOCHIGI S, et al. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice[J]. Part Fibre Toxicol, 2013, 10: 41. |
44 | HAO F, LIU Q S, CHEN X, et al. Exploring the heterogeneity of nanoparticles in their interactions with plasma coagulation factor XII[J]. ACS Nano, 2019, 13(2): 1990-2003. |
45 | BAUER A T, STROZYK E A, GORZELANNY C, et al. Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells[J]. Biomaterials, 2011, 32(33): 8385-8393. |
46 | LIU X, XUE Y, DING T, et al. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions[J]. Part Fibre Toxicol, 2012, 9: 36. |
47 | GUO C, WANG J, JING L, et al. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles[J]. Environ Pollut, 2018, 236: 926-936. |
48 | DU Z J, CUI G Q, ZHANG J, et al. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway[J]. Int J Nanomedicine, 2017, 12: 2179-2188. |
49 | LOZANO O, SILVA-PLATAS C, CHAPOY-VILLANUEVA H, et al. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes [J]. Part Fibre Toxicol, 2020, 17(1): 15. |
50 | GUO C, MA R, LIU X, et al. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway[J]. Chemosphere, 2018, 210: 183-192. |
51 | KAN H, PAN D, CASTRANOVA V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway[J]. Inhal Toxicol, 2018, 30(9/10): 335-342. |
52 | ORNELAS-SOTO N, RUBIO-GOVEA R, GUERRERO-BELTRÁN C E, et al. Enhancing internalization of silica particles in myocardial cells through surface modification[J]. Mater Sci Eng C, 2017, 79: 831-840. |
53 | YOSHIDA T, YOSHIOKA Y, MORISHITA Y,et al. Protein corona changes mediated by surface modification of amorphous silica nanoparticles suppress acute toxicity and activation of intrinsic coagulation cascade in mice[J]. Nanotechnology, 2015, 26(24): 245101. |
54 | LIU X Y, DING Y X, ZHAO B J, et al. In vitro and in vivo evaluation of puerarin-loaded PEGylated mesoporous silica nanoparticles[J]. Drug Dev Ind Pharm, 2016, 42(12): 2031-2037. |
55 | HASSANKHANI R, ESMAEILLOU M, TEHRANI A A, et al. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice[J]. Environ Sci Pollut Res Int, 2015, 22(2): 1127-1132. |
56 | CHEN Z, MENG H, XING G M, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population [J]. Environ Sci Technol, 2008, 42(23): 8985-8992. |
57 | FENG L, YANG X, SHI Y, et al. Co-exposure subacute toxicity of silica nanoparticles and lead acetate on cardiovascular system [J]. Int J Nanomedicine, 2018, 13: 7819-7834. |
58 | DUAN J, YU Y, LI Y, et al. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2016, 151: 152-162. |
[1] | Zhangqi LOU,Qifan YU,Xuezhi SHEN,Hongqing CHEN,Yufeng LUO,Qianye CHEN,Guofen ZHENG,Yuemin DING,Xiong ZHANG. Effect of DEHP exposure in pregnant mice on neurobehavior of offsprings and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(2): 323-329. |
[2] | WANG Yanlei, JIA Yuhan, ZHAO Jiahan, TANG Yating, LIN Yixin, CHEN Mo, JIANG Hong. Improvement of glycyrrhetinic acid on damage of synaptic ultrastructures of hippocampus induced by realgar in mice [J]. Journal of Jilin University(Medicine Edition), 2019, 45(02): 268-272. |
[3] | YU Guang-yan,SONG Xiang-fu,ZHAO Shu-hua,LIU Xiao-mei,SUN Zhi-wei. Induction effect of benzene on apoptosis of mouse bone marrow cells through mitochondrial-dependent apoptosis pathway and its mechanism [J]. Journal of Jilin University Medicine Edition, 2014, 40(05): 943-946. |
[4] | GAO Yu-ting,LIU Lin-hua,HUANG Ming-yuan,LIANG Hai-rong,FAN Hong-xue,TANG Huan-we. Influences of low level hydroquinone in biological characteristics and expression of poly(ADP-ribose)polymerase-1 gene in rat bone mesenchymal stem cells [J]. J4, 2012, 38(2): 216-220. |
[5] | TIAN Meng-Xiu, CHANG MIng, Ben-Qing, XIE Hong-Rong, WANG Dan-Peng, ZHANG Chun-Guang, HU Lin-Sen. (1.Department of Neurology| First Hospital,Jilin University|Changchun 130021|China;2.People’s Hospital of Tianjin,Tianjin 300130,China;3.Deparment of Orthopedics|Armed Police Hospital of Jinlin Province|Changchun 130052|China) [J]. J4, 2010, 36(1): 76-77. |
[6] | ZHANG Jian-xin, JIN Ming-hua, DU Hai-ying, LIU Xiao-mei, LIU Ying, WANG Wen, SUN Zhi-wei. Toxicity of methyl mercury on male mouse germ cells [J]. J4, 2008, 34(5): 767-772. |
[7] | . Advance research on biological toxicity of herbicide atrazine in vivo [J]. J4, 2012, 38(6): 1236-1240. |
[8] | WU Guanyu, WANG Shuo, LIU Yan, ZHAO Shuhua. Lipid peroxidation of dibutylphthalate on reproductive system of male mice [J]. Journal of Jilin University Medicine Edition, 2015, 41(03): 553-557. |
[9] | GENG Weijia, LI Yang, YU Yongbo, YU Yang, DUAN Junchao, YANG Yumei, ZOU Yang, SUN Zhiwei. Inhibitory effects of N-acetyl-cysteine on SiO2 nanoparticles-induced cytotoxicity [J]. Journal of Jilin University Medicine Edition, 2015, 41(03): 486-490. |