Journal of Jilin University(Medicine Edition) ›› 2021, Vol. 47 ›› Issue (4): 1056-1063.doi: 10.13481/j.1671-587X.20210434
• Review • Previous Articles Next Articles
Received:
2020-11-08
Online:
2021-07-28
Published:
2021-07-22
CLC Number:
1 | WILKINSON R W, LEISHMAN A J. Further advances in cancer immunotherapy: going beyond checkpoint blockade[J]. Front Immunol, 2018, 9: 1082. |
2 | MANEGOLD C, DINGEMANS A C, GRAY J E, et al. The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC[J]. J Thorac Oncol, 2017, 12(2): 194-207. |
3 | FUKUMURA D, KLOEPPER J, AMOOZGAR Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340. |
4 | HUANG Y H, KIM B Y S, CHAN C K, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(3): 195-203. |
5 | SIA D, ALSINET C, NEWELL P, et al. VEGF signaling in cancer treatment[J]. Curr Pharm Des, 2014, 20(17): 2834-2842. |
6 | FERRARA N, ADAMIS A P. Ten years of anti-vascular endothelial growth factor therapy[J]. Nat Rev Drug Discov, 2016, 15(6): 385-403. |
7 | GABRILOVICH D I, OSTRAND-ROSENBERG S, BRONTE V. Coordinated regulation of myeloid cells by tumours[J]. Nat Rev Immunol, 2012, 12(4): 253-268. |
8 | MEIROW Y, KANTERMAN J, BANIYASH M. Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate[J]. Front Immunol, 2015, 6: 523. |
9 | NAKAMURA I, SHIBATA M, GONDA K, et al. Serum levels of vascular endothelial growth factor are increased and correlate with malnutrition, immunosuppression involving MDSCs and systemic inflammation in patients with cancer of the digestive system[J]. Oncol Lett, 2013, 5(5): 1682-1686. |
10 | KARAKHANOVA S, LINK J, HEINRICH M, et al. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells[J]. Oncoimmunology, 2015, 4(4): e998519. |
11 | KUSMARTSEV S, ERUSLANOV E, KÜBLER H, et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma[J]. J Immunol, 2008, 181(1): 346-353. |
12 | FENG P H, CHEN K Y, HUANG Y C, et al. Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma[J]. J Thorac Oncol, 2018, 13(7): 958-967. |
13 | PARKER K H, BEURY D W, OSTRAND-ROSENBERG S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res, 2015, 128: 95-139. |
14 | YANG L, DEBUSK L M, FUKUDA K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis[J]. Cancer Cell, 2004, 6(4): 409-421. |
15 | YANG L, HUANG J H, REN X B, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis[J]. Cancer Cell, 2008, 13(1): 23-35. |
16 | TAMURA R, TANAKA T, YAMAMOTO Y, et al. Dual role of macrophage in tumor immunity[J]. Immunotherapy, 2018, 10(10): 899-909. |
17 | SZEBENI G J, VIZLER C, KITAJKA K, et al. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters[J]. Mediators Inflamm, 2017, 2017: 9294018. |
18 | HUANG Y H, YUAN J P, RIGHI E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci U S A, 2012, 109(43): 17561-17566. |
19 | CHUDNOVSKIY A, PASQUAL G, VICTORA G D. Studying interactions between dendritic cells and T cells in vivo [J]. Curr Opin Immunol, 2019, 58: 24-30. |
20 | LIN W, LIU T T, WANG B B, et al. The role of ocular dendritic cells in uveitis[J]. Immunol Lett, 2019, 209: 4-10. |
21 | GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8): 571-578. |
22 | HU Z Q, XUE H, LONG J H, et al. Biophysical properties and motility of human mature dendritic cells deteriorated by vascular endothelial growth factor through cytoskeleton remodeling[J]. Int J Mol Sci, 2016, 17(11): E1756. |
23 | SAITO H, TSUJITANI S, IKEGUCHI M, et al. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue[J]. Br J Cancer, 1998, 78(12): 1573-1577. |
24 | ZHANG W, SHOU W D, XU Y J, et al. Low-frequency ultrasound-induced VEGF suppression and synergy with dendritic cell-mediated anti-tumor immunity in murine prostate cancer cells in vitro [J]. Sci Rep, 2017, 7(1): 5778. |
25 | OYAMA T, RAN S, ISHIDA T, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells[J]. J Immunol, 1998, 160(3): 1224-1232. |
26 | BAI W K, ZHANG W, HU B. Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer[J]. Onco Targets Ther, 2018, 11: 1267-1274. |
27 | MIMURA K, KONO K, TAKAHASHI A, et al. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J]. Cancer Immunol Immunother, 2007, 56(6): 761-770. |
28 | DIKOV M M, OHM J E, RAY N, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation[J]. J Immunol, 2005, 174(1): 215-222. |
29 | FRIDMAN W H, PAGÈS F, SAUTÈS-FRIDMAN C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306. |
30 | MULLIGAN J K, ROSENZWEIG S A, YOUNG M R. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2[J]. J Immunother, 2010, 33(2): 126-135. |
31 | ZIOGAS A C, GAVALAS N G, TSIATAS M, et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2[J]. Int J Cancer, 2012, 130(4): 857-864. |
32 | MOTZ G T, SANTORO S P, WANG L P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-615. |
33 | SHRIMALI R K, YU Z Y, THEORET M R, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer[J]. Cancer Res, 2010, 70(15): 6171-6180. |
34 | JAIN R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62. |
35 | BUI T M, WIESOLEK H L, SUMAGIN R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis[J]. J Leukoc Biol, 2020, 108(3): 787-799. |
36 | FACCIABENE A, PENG X H, HAGEMANN I S, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells[J]. Nature, 2011, 475(7355): 226-230. |
37 | MEI B, CHEN J J, YANG N, et al. The regulatory mechanism and biological significance of the Snail-miR590-VEGFR-NRP1 axis in the angiogenesis, growth and metastasis of gastric cancer[J]. Cell Death Dis, 2020, 11(4): 241. |
38 | PALAZÓN A, ARAGONÉS J, MORALES-KASTRESANA A, et al. Molecular pathways: hypoxia response in immune cells fighting or promoting cancer[J]. Clin Cancer Res, 2012, 18(5): 1207-1213. |
39 | MISSIAEN R, MAZZONE M, BERGERS G. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer[J]. Semin Cancer Biol, 2018, 52(Pt 2):107-116. |
40 | SCHMITTNAEGEL M, RIGAMONTI N, KADIOGLU E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade[J]. Sci Transl Med, 2017, 9(385): eaak9670. |
41 | HUBER V, CAMISASCHI C, BERZI A, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation[J]. Semin Cancer Biol, 2017, 43: 74-89. |
42 | PILON-THOMAS S, KODUMUDI K N, EL-KENAWI A E, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy[J]. Cancer Res, 2016, 76(6): 1381-1390. |
43 | LI X, WENES M, ROMERO P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. |
44 | SOCINSKI M A, JOTTE R M, CAPPUZZO F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24): 2288-2301. |
45 | RECK M, MOK T S K, NISHIO M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150):key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial[J]. Lancet Respir Med, 2019, 7(5): 387-401. |
46 | WEST H, MCCLEOD M, HUSSEIN M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130):a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7): 924-937. |
47 | LEE M S, RYOO B Y, HSU C H, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2020, 21(6): 808-820. |
48 | KUDO M. A new era in systemic therapy for hepatocellular carcinoma: atezolizumab plus bevacizumab combination therapy[J]. Liver Cancer, 2020, 9(2): 119-137. |
49 | FINN R S, QIN S K, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. |
50 | 胡 捷,周 俭.阿替利珠单抗联合贝伐珠单抗使肝癌治疗燃起希望[J].肝脏,2020,25(9):903-904. |
51 | 魏建莹,孙 巍,刘晓民,等.肝细胞癌的靶向及免疫治疗进展[J].临床肝胆病杂志, 2020,36(10): 2320-2324. |
52 | RINI B I, POWLES T, ATKINS M B, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial[J]. Lancet, 2019, 393(10189): 2404-2415. |
53 | RINI B I, PLIMACK E R, STUS V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380(12): 1116-1127. |
54 | MOTZER R J, PENKOV K, HAANEN J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380(12): 1103-1115. |
55 | LIU J Q, LIU Q, LI Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8(1): e000696. |
56 | DIRIX L Y, TAKACS I, JERUSALEM G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study[J]. Breast Cancer Res Treat, 2018, 167(3): 671-686. |
57 | NANDA, CHOW L Q, DEES E C, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ⅰb KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21): 2460-2467. |
58 | EMENS L A, CRUZ C, EDER J P, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study[J]. JAMA Oncol, 2019, 5(1): 74-82. |
59 | HU X C, CAO J, HU W W, et al. Multicenter phase Ⅱ study of apatinib in non-triple-negative metastatic breast cancer[J]. BMC Cancer, 2014, 14: 820. |
60 | 杜雯雯,黄建安.基于程序性死亡受体-1及其配体为靶点的肺癌免疫治疗新进展[J].中国实用内科杂志, 2019,39(5): 403-406. |
[1] | . Research progress in prevention and treatment of intraoperative and postoperative lymphatic cysts in female patients with malignant tumor pelvic [J]. Journal of Jilin University(Medicine Edition), 2020, 46(04): 888-893. |
[2] | SHI Guanghuan, ZHOU Shiping, XU Dongsheng, WANG Xiu. Killing effect of amplified NK cells on gastric cancer cells and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2020, 46(03): 530-535. |
[3] | ZHU Zhongbo, QIAN Jiansheng, YANG Shuo, LI Kangle, DOU Jianwei. Inhibitory effect of different doses of 125I seed implantation on tumor-bearing proliferation in nude mice with breast cancer and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2019, 45(06): 1305-1309. |
[4] | . Research progress in clinical application of endocrine therapy for HR+HER2-advanced breast cancer [J]. Journal of Jilin University(Medicine Edition), 2019, 45(03): 736-741. |
[5] | . Research progress in anti-tumor effect and mechanism of photodynamic therapy [J]. Journal of Jilin University Medicine Edition, 2018, 44(01): 200-204. |
[6] | DENG Ziliang, WANG Sen, LI Peng, XIE Kuilong, LI Shuxian, ZHOU Shixiong, HE Xiaozhou, CHEN Dong, GUO Hongsheng. Enhancement of IL-37 in chemosensitivity of cervical cancer HeLa cells to cisplatin [J]. Journal of Jilin University Medicine Edition, 2017, 43(05): 862-866. |
[7] | . Progress research on mechanism of endocrine resistance in patients with estrogen receptor positive breast cancer [J]. Journal of Jilin University Medicine Edition, 2017, 43(02): 454-458. |
[8] | . Advanced research on relationship between tumor microenvironment and radiosensitivity of tumor cells [J]. Journal of Jilin University Medicine Edition, 2016, 42(05): 1038-1044. |
[9] | HUANG Xiaodong, LU Qian, SHEN Nan, WANG Yanchun. Inhibitory effects of Alkaline S.chinenis polysaccharides on proliferation and invasion abilities of colon cancer HT-29 cells in vitro [J]. Journal of Jilin University Medicine Edition, 2015, 41(02): 287-290. |
[10] | QI Yali, ZHAO Dali, LIU Yanjun, GONG Shouliang, WANG Zhicheng. Effects of Akt combined with ionizing radiation onapoptosis, autophagy and proliferation in breast cancer MCF-7 cells [J]. Journal of Jilin University Medicine Edition, 2015, 41(01): 1-5. |
[11] | LI Chang-ling,LIN Di,XING Si-ning,ZHAO Song,CHEN Hui-peng,ZHOU Fan,MA Dong-chu. Inhibitory effect of metformin on proliferation of megakaryocytic leukemia cell line Dami and its mechanism [J]. Journal of Jilin University Medicine Edition, 2014, 40(03): 534-538. |
[12] | WANG Bo,GU Jun-lian,DAI Yu-xin,TONG Li-jun,MENG Ling-na,LI Yang. Inhibitory effect of indomethacin combined with radiation on proliferation of human acute myeloid leukemia HL-60 cells [J]. Journal of Jilin University Medicine Edition, 2013, 39(2): 218-221. |
[13] | ZHANG Mao,JIN Hai-guo, SU Qing-xiu|BU Ming-wei, LI Yu-ping,LIU Gui-gang . [J]. J4, 2012, 38(4): 784-787. |
[14] | LI Yan-bo,WANG Zhi-cheng|ZHANG Yan-qiu|DONG Li-hua,LIU Yang,LI Jin-hua. Effects of TRAIL and endostatin double-gene-radiotherapy on proliferation,cell cycle procession and apoptosis |in human vascular endothelial |cells [J]. J4, 2012, 38(4): 611-617. |
[15] | QUAN Hai-ying|WANG Ming-yan|ZHANG Tong-fei|GAO Ying|BAI Yu|ZHAO Xuan-yi. Mechanism of 3-methyladenine in promoting sensitivity of chemotherapeutics in oral squamous cell carcinoma in vitro [J]. J4, 2012, 38(1): 50-53. |