1 |
NAMGUNG S, YOON J J, YOON C S, et al. Prunella vulgaris attenuates diabetic renal injury by suppressing glomerular fibrosis and inflammation[J].Am J Chin Med,2017,45(3):475-495.
|
2 |
GILBERT R E. Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease [J].Diabetes, 2017, 66(4):791-800.
|
3 |
WAKINO S, HASEGAWA K, ITOH H. Sirtuin and metabolic kidney disease [J].Kidney Int,2015,88(4):691-698.
|
4 |
HUANG X Z, WEN D H, ZHANG M, et al.Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway [J].J Cell Biochem, 2014, 115(5):996-1005.
|
5 |
LI C R, CAI F, YANG Y Q,et al. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats:involvement of SIRT1 and TGF-β1 pathway [J].Eur J Pharmacol,2010,649(1/2/3):382-389.
|
6 |
LI J H, QU X L, RICARDO S D, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3 [J].Am J Pathol,2010,177(3):1065-1071.
|
7 |
曲 萌,董佳婧,姜 锐,等.红参发酵产物对高糖下大鼠肾小球系膜细胞增殖和细胞外基质降解的影响[J].吉林大学学报(医学版), 2017, 43(2): 245-249.
|
8 |
FAN L Z, SEBE A, PETERFI Z, et al.Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway [J].Mol Biol Cell,2007,18(3):1083-1097.
|
9 |
HILLS C E, SQUIRES P E.TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy[J].Am J Nephrol,2010,31(1):68-74.
|
10 |
LIU B C, TANG T T, LV L L,et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int,2018,93(3):568-579.
|
11 |
ZHOU T, LUO M C, CAI W, et al. Runt-related transcription factor 1 (RUNX1) promotes TGF-β- induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ[J]. EBioMedicine,2018,31:217-225.
|
12 |
TANG P M K, ZHANG Y Y, MAK T S K, et al. Transforming growth factor-β signalling in renal fibrosis: from Smads to non-coding RNAs[J].J Physiol,2018,596(16): 3493-3503.
|
13 |
杨丽娜, 马 良, 付 平. 转录激活因子3在急性肾损伤及慢性肾脏病中的作用机制研究进展[J].中国实用内科杂志,2021,41(2):163-166.
|
14 |
LODYGA M, HINZ B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity[J]. Semin Cell Dev Biol, 2020, 101:123-139.
|
15 |
SHENG L L, ZHUANG S G. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis [J]. Front Physiol, 2020, 11:569322.
|
16 |
SHARMA K, JIN Y, GUO J, et al. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice[J].Diabetes,1996, 45(4):522-530.
|
17 |
郭海燕, 邢志华, 王丽丽, 等. 沉默GDF15基因表达对高糖诱导的肾小管上皮细胞凋亡和氧化应激的影响[J].郑州大学学报(医学版),2020,55(3):358-373.
|
18 |
VOELKER J, BERG P H, SHEETZ M, et al. Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy[J].J Am Soc Nephrol,2017,28(3):953-962.
|
|
WALTON K L, JOHNSON K E, HARRISON C A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis [J].Front Pharmacol,2017,8: 461.
|
20 |
XU B H, SHENG J Y, YOU Y K, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy [J].Metabolism,2020,103:154013.
|
21 |
ZHAO L J, ZOU Y T, LIU F. Transforming growth factor-Beta 1 in diabetic kidney disease[J].Front Cell Dev Biol,2020, 8:187.
|
22 |
CHEN C, ZHOU M, GE Y C, et al. SIRT1 and aging related signaling pathways [J]. Mech Ageing Dev, 2020, 187:111215.
|
23 |
PACKER M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors [J]. Circ Heart Fail, 2020, 13(9):e007197.
|
24 |
杨 莉, 时 克, 高方媛, 等. 乙型肝炎肝硬化患者发生慢性肾病的影响因素分析[J]. 临床肝胆病杂志,2021,37(8):1817-1821.
|
25 |
DU L, QIAN X, LI Y, et al. Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy[J]. Acta Pharmacol Sin, 2021, 42(2): 242-251.
|
26 |
JUNG J, JANG H J, EOM S J, et al. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects [J]. J Ginseng Res,2019,43(1):20-26.
|
27 |
BAE C H, KIM J, NAM W, et al. Fermented red ginseng alleviates ovalbumin-induced inflammation in mice by suppressing interleukin-4 and immunoglobulin E expression[J]. J Med Food,2021,24(6):569-576.
|
28 |
CHEON J M, KIM D I, KIM K S.Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice[J].J Ginseng Res,2015,39(4):331-337.
|
29 |
JANG S H, PARK J, KIM S H, et al. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model [J]. Pharm Biol,2017,55(1):317-323.
|
30 |
OH M R, PARK S H, KIM S Y, et al. Postprandial glucose-lowering effects of fermented red ginseng in subjects with impaired fasting glucose or type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial[J].BMC Complement Altern Med,2014,14:237.
|