1 |
IZZY S. Traumatic spinal cord injury[J]. Continuum, 2024, 30(1): 53-72.
|
2 |
AGIRMAN G, YU K B, HSIAO E Y. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571): 1087-1092.
|
3 |
KIGERL K A, HALL J C E, WANG L L, et al. Gut dysbiosis impairs recovery after spinal cord injury[J]. J Exp Med, 2016, 213(12): 2603-2620.
|
4 |
AHUJA C S, NORI S, TETREAULT L, et al. Traumatic spinal cord injury-repair and regeneration[J]. Neurosurgery, 2017, 80(3S): S9-S22.
|
5 |
FILBIN M T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS[J]. Nat Rev Neurosci, 2003, 4: 703-713.
|
6 |
SQUAIR J W, DHALIWAL R, CRAGG J J, et al. National survey of bladder and gastrointestinal dysfunction in people with spinal cord injury[J]. J Neurotrauma, 2019, 36(12): 2011-2019.
|
7 |
ZHANG C, ZHANG W, ZHANG J, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury[J]. J Transl Med, 2018, 16(1): 353.
|
8 |
JING Y L, YU Y, BAI F, et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis[J]. Microbiome, 2021, 9(1): 59.
|
9 |
YU B B, QIU H D, CHENG S P, et al. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case-control study in a rehabilitation setting[J]. Bioengineered, 2021, 12(1): 4489-4499.
|
10 |
GUNGOR B, ADIGUZEL E, GURSEL I, et al. Intestinal microbiota in patients with spinal cord injury[J]. PLoS One, 2016, 11(1): e0145878.
|
11 |
RICHARDSON P M, MCGUINNESS U M, AGUAYO A J. Axons from CNS neurons regenerate into PNS grafts[J]. Nature, 1980, 284(5753): 264-265.
|
12 |
JING Y L, YANG D G, BAI F, et al. Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice[J]. J Neurotrauma, 2019, 36(18): 2646-2664.
|
13 |
ZHAO J Y, BI W, XIAO S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice[J]. Sci Rep, 2019, 9(1): 5790.
|
14 |
SINGH S, SAHU K, SINGH C, et al. Lipopolysaccharide induced altered signaling pathways in various neurological disorders[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(3): 285-294.
|
15 |
LEITNER G R, WENZEL T J, MARSHALL N, et al. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders[J]. Expert Opin Ther Targets, 2019, 23(10): 865-882.
|
16 |
MAZGAEEN L, GURUNG P. Recent advances in lipopolysaccharide recognition systems[J]. Int J Mol Sci, 2020, 21(2): 379.
|
17 |
MYERS S A, GOBEJISHVILI L, SARASWAT OHRI S, et al. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia[J]. Neurobiol Dis, 2019, 124: 353-363.
|
18 |
RONG Z J, HUANG Y L, CAI H H, et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway[J]. Front Nutr, 2021, 8: 702659.
|
19 |
REICHARDT N, DUNCAN S H, YOUNG P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. ISME J, 2014, 8(6): 1323-1335.
|
20 |
HOLOTA Y, DOVBYNCHUK T, KAJI I, et al. The long-term consequences of antibiotic therapy: role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity[J]. PLoS One, 2019, 14(8): e0220642.
|
21 |
DONG Y, CUI C. The role of short-chain fatty acids in central nervous system diseases[J]. Mol Cell Biochem, 2022, 477(11): 2595-2607.
|
22 |
O’CONNOR G, JEFFREY E, MADORMA D, et al. Investigation of microbiota alterations and intestinal inflammation post-spinal cord injury in rat model[J]. J Neurotrauma, 2018, 35(18): 2159-2166.
|
23 |
LANZA M, CAMPOLO M, CASILI G, et al. Sodium butyrate exerts neuroprotective effects in spinal cord injury[J]. Mol Neurobiol, 2019, 56(6): 3937-3947.
|
24 |
CHEN S J, CHEN C C, LIAO H Y, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 98(8): e848-e858.
|
25 |
YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276.
|
26 |
REIGSTAD C S, SALMONSON C E, RAINEY J F, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. FASEB J, 2015, 29(4): 1395-1403.
|
27 |
CHENG J, LI W M, WANG Y, et al. Electroacupuncture modulates the intestinal microecology to improve intestinal motility in spinal cord injury rats[J]. Microb Biotechnol, 2022, 15(3): 862-873.
|
28 |
PARK D H, PARK J Y, KANG K S, et al. Neuroprotective effect of gallocatechin gallate on glutamate-induced oxidative stress in hippocampal HT22 cells[J]. Molecules, 2021, 26(5): 1387.
|
29 |
STRANDWITZ P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B): 128-133.
|
30 |
DIEHL G E, LONGMAN R S, ZHANG J X, et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells[J]. Nature, 2013, 494(7435): 116-120.
|
31 |
ESPÍRITO SANTO C CDO, SILVA FIORIN FDA, ILHA J, et al. Spinal cord injury by clip-compression induces anxiety and depression-like behaviours in female rats: the role of the inflammatory response[J]. Brain Behav Immun, 2019, 78: 91-104.
|
32 |
JING Y L, BAI F, YU Y. Spinal cord injury and gut microbiota: a review[J]. Life Sci, 2021, 266: 118865.
|
33 |
SINGH V, ROTH S, LLOVERA G, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke[J]. J Neurosci, 2016, 36(28): 7428-7440.
|
34 |
ESPINOSA-MEDINA I, SAHA O, BOISMOREAU F, et al. The sacral autonomic outflow is sympathetic[J]. Science, 2016, 354(6314): 893-897.
|