Journal of Jilin University(Medicine Edition) ›› 2025, Vol. 51 ›› Issue (1): 245-254.doi: 10.13481/j.1671-587X.20250130
• Review • Previous Articles
Received:2023-10-13
Accepted:2023-11-23
Online:2025-01-28
Published:2025-03-06
Contact:
Chen HUAN
E-mail:lmsxsml@jlu.edu.cn
CLC Number:
Mingxiu XU,Chen HUAN. Research progress in role of host and viral F-Box proteins in process of viral infection[J].Journal of Jilin University(Medicine Edition), 2025, 51(1): 245-254.
Tab.1
Role of host F-Box protein in process of viral infection"
| Virus classification | Virus | Host F-Box protein | Mechanism | Literature |
|---|---|---|---|---|
RNA | HIV | FBXW1 | Degradation of phosphorylated Vpu and inhibition of NF-κB activity; binds to phosphorylated Vpu, and degrades CD4, enhances BST-2 ubiquitination, inhibits p53 phosphorylation,and promotes T cell apoptosis. Degrade ICAM-1 and promote viral replication | [ |
| FBXO11 | Inhibition of HIV-1 LTR activity and inhibition of latent HIV-1 activation | [ | ||
| FBXO1 | Degradation of Vif protein through K48 linked ubiquitin chains, reducing infectivity of progeny virions | [ | ||
| FBXO34 | Promotion of ubiquitination degradation of hnRNP U, enhance HIV translation, and keep it in an activated state | [ | ||
VSV | FBXW7 | Promotion of ubiquitination degradation of SHP2, destroy SHP2/c-Cbl complex that can degrade RIG-I, stabilize RIG-I, and increase antiviral response of host cells | [ | |
FBXO21 | Promotion of polyubiquitination modification of ASK1 K29, enhance JNK and p38 signaling pathways, and promote production of pro-inflammatory cytokines and type Ⅰ interferon | [ | ||
IAV | FBXW1 | Decreasing of expression of NS1, thereby significantly reducing replication level of influenza virus | [ | |
| FBXW7 | Ubiquitination degrades SHP2 and inhibits influenza A virus replication | [ | ||
| FBXO45 | Mediating the polyubiquitination of IFNLR1 and reducing its protein stability | [ | ||
| FBXO6 | Interacting with NLRX1 to reduce host antiviral response to influenza virus | [ | ||
| PEDV | FBXW7 | Inhibiting PEDV infection by enhancing expression of endogenous RIG-I and TBK1 and activating host interferon signaling pathway | [ | |
RVFV | FBXO3 | NSs and FBXO3 are assembled into SCF complexes to degrade p62 and inhibit type Ⅰ interferon reaction | [ | |
| FBXW11,FBXW1 | NSs recruit FBXW11 and FBXW1, degradation of PKR, disruption of PKR-mediated antiviral effects | [ | ||
| HTLV‐1 | FBXO25 | HBZ inhibits polyubiquitination of HAX-2 protein and promotes HAX-3 expression by inhibiting the binding of HAX-1 and FBXO25 | [ | |
DNA | HSV-1 | FBXO2 | HSV-1 infection promotes shuttling of NFB42 between cytosol and nucleus, FBXO2 interacts with UL9, this interaction mediates export of UL9 protein from the nucleus to the cytosol, leading to its ubiquitination and degradation via 26S proteasome | [ |
| EBV | FBXO2 | Interacting and degrading glycoprotein gB, reducing EBV infectivity | [ | |
| EBV | SKP2 | 3C recruits SKP2 to cyclinA complex to promote ubiquitination degradation of p27 and ubiquitination of EB protein | [ | |
| HCV | FBXL2 | NS5A protein forms complexes with IP3R3 and FBXL2, and promotes FBXL2 mediated degradation of IP3R3, promoting HBV infection | [ | |
KSHV | FBXW7 | FBXW7 increases ubiquitination degradation of ICN, and LANA can compete with ICN to bind to FBXW7 and save degradation of ICN | [ | |
| SKP2 | vIRF-3 binds to SKP2 ubiquitin ligase, stimulates ubiquitination and transcriptional activity of c-Myc, and promotes tumorigenesis | [ | ||
| Adenovirus | FBW7 | E1A interacts with RR1/RBX1 to inhibit FBW7 ubiquitination, reduce endogenous FBW7 degradation, and promote cancer cell proliferation | [ |
Tab.2
Role of viral F-Box protein in process of viral infection"
| Virus classification | Viral F-Box protein | Mechanism | Literature |
|---|---|---|---|
ECTV | EVM00,EVM00, EVM15,EVM165 | Interacting with SKP1, Cullin1, and ROC1 to form SCF complexes, exercising ubiquitination function and inhibiting TNF-α and IL-1β, stimulating IκB-a degradation and p65 nuclear translocation, inhibiting activation of NF- κB | [ |
VV | C9 | Recognition of IFITs and degradation of IFITs through proteasome pathway affect antiviral activity of host | [ |
| vIRD | Promotion of RIPK3 ubiquitin degradation and promotion of viral replication | [ | |
| ORFV | ORF00,ORF12, ORF12,ORF128 | Suppressing of degradation of p-IκBα protein, preventing nuclear translocation of p65, and inhibiting host activation of NF-κB signaling pathway | [ |
| Megavirus | FNIP | Interacting with host Rap1B and Rap7A to form SCF complexes, promoting degradation of Rap1B and Rap7A | [ |
| Baculovirus | LEF-7 | Suppressing of key regions of phosphorylated H2AX, enhance release of late stage genes of virus, and increase virus replication | [ |
| 1 | BAI C, SEN P, HOFMANN K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box[J]. Cell, 1996, 86(2): 263-274. |
| 2 | KIPREOS E T, PAGANO M. The F-box protein family[J]. Genome Biol, 2000, 1(5): ReviewS3002.1-30027. |
| 3 | CARDOZO T, PAGANO M. The SCF ubiquitin ligase: insights into a molecular machine[J]. Nat Rev Mol Cell Biol, 2004, 5(9): 739-751. |
| 4 | BARRY M, VAN BUUREN N, BURLES K, et al. Poxvirus exploitation of the ubiquitin-proteasome system[J]. Viruses, 2010, 2(10): 2356-2380. |
| 5 | SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat: a common architecture for diverse functions[J]. Trends Biochem Sci, 1999, 24(5): 181-185. |
| 6 | HARPER J W, SCHULMAN B A. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis[J]. Annu Rev Biochem, 2021, 90: 403-429. |
| 7 | ENKHBAYAR P, KAMIYA M, OSAKI M, et al. Structural principles of leucine-rich repeat (LRR) proteins[J]. Proteins, 2004, 54(3): 394-403. |
| 8 | YOSHIDA Y, CHIBA T, TOKUNAGA F, et al. E3 ubiquitin ligase that recognizes sugar chains[J]. Nature, 2002, 418(6896): 438-442. |
| 9 | YANG Q, ZHAO J Y, CHEN D, et al. E3 ubiquitin ligases: styles, structures and functions[J]. Mol Biomed, 2021, 2(1): 23. |
| 10 | FELDMAN R M, CORRELL C C, KAPLAN K B, et al. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p[J]. Cell, 1997, 91(2): 221-230. |
| 11 | SKOWYRA D, CRAIG K L, TYERS M, et al. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex[J]. Cell, 1997, 91(2): 209-219. |
| 12 | GLENN K A, NELSON R F, WEN H M, et al. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases[J]. J Biol Chem, 2008, 283(19): 12717-12729. |
| 13 | ZHANG H J, TIAN J X, QI X K, et al. Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation[J]. PLoS Pathog, 2018, 14(7): e1007208. |
| 14 | DURCAN T M, TANG M Y, PÉRUSSE J R, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin[J]. EMBO J, 2014, 33(21): 2473-2491. |
| 15 | CHAU V, TOBIAS J W, BACHMAIR A, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein[J]. Science, 1989, 243(4898): 1576-1583. |
| 16 | MATSUMOTO M L, WICKLIFFE K E, DONG K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody[J]. Mol Cell, 2010, 39(3): 477-484. |
| 17 | HE X, ZHU Y J, ZHANG Y H, et al. RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation[J]. EMBO J, 2019, 38(14): e100978. |
| 18 | AL-HAKIM A K, ZAGORSKA A, CHAPMAN L, et al. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains[J]. Biochem J, 2008, 411(2): 249-260. |
| 19 | SPENCE J, SADIS S, HAAS A L, et al. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination[J]. Mol Cell Biol, 1995, 15(3): 1265-1273. |
| 20 | RITTINGER K, IKEDA F. Linear ubiquitin chains: enzymes, mechanisms and biology[J]. Open Biol, 2017, 7(4): 170026. |
| 21 | LI Z, FAN S J, WANG J, et al. Zebrafish F-box protein fbxo3 negatively regulates antiviral response through promoting K27-linked polyubiquitination of the transcription factors irf3 and irf7[J]. J Immunol, 2020, 205(7): 1897-1908. |
| 22 | YU Z, CHEN T Y, LI X L, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response[J]. Elife, 2016, 5: e14087. |
| 23 | AUGUSTINE T, CHAUDHARY P, GUPTA K, et al. Cyclin F/FBXO1 interacts with HIV-1 viral infectivity factor (vif) and restricts progeny virion infectivity by ubiquitination and proteasomal degradation of vif protein through SCFcyclin F E3 ligase machinery[J]. J Biol Chem, 2017, 292(13): 5349-5363. |
| 24 | ZHANG J D, YANG Z F, OU J Y, et al. The F-box protein FBXL18 promotes glioma progression by promoting K63-linked ubiquitination of Akt[J]. FEBS Lett, 2017, 591(1): 145-154. |
| 25 | CUI W, XIAO N M, XIAO H, et al. β-TrCP-mediated IRAK1 degradation releases TAK1-TRAF6 from the membrane to the cytosol for TAK1-dependent NF-κB activation[J]. Mol Cell Biol, 2012, 32(19): 3990-4000. |
| 26 | FU X H, ZHAO J J, YU G P, et al. OTUD6A promotes prostate tumorigenesis via deubiquitinating Brg1 and AR[J]. Commun Biol, 2022, 5(1): 182. |
| 27 | BOUR S, PERRIN C, AKARI H, et al. The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of Ikappa B[J]. J Biol Chem, 2001, 276(19): 15920-15928. |
| 28 | SUN H W, WANG K, YAO W, et al. Inter-fighting between influenza A virus NS1 and β-TrCP: a novel mechanism of anti-influenza virus[J]. Viruses, 2022, 14(11): 2426. |
| 29 | RAMAKRISHNAN R, LIU H B, DONAHUE H, et al. Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function[J]. Retrovirology, 2012, 9: 90. |
| 30 | YAN H Y, WANG H Q, ZHONG M, et al. PML suppresses influenza virus replication by promoting FBXW7 expression[J]. Virol Sin, 2021, 36(5): 1154-1164. |
| 31 | SONG Y J, LAI L H, CHONG Z L, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses[J]. Nat Commun, 2017, 8: 14654. |
| 32 | LI M, WU Y, CHEN J, et al. Innate immune evasion of porcine epidemic diarrhea virus through degradation of the FBXW7 protein via the ubiquitin-proteasome pathway[J]. J Virol, 2022, 96(5): e0088921. |
| 33 | EOM C Y, LEHMAN I R. Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci USA, 2003, 100(17): 9803-9807. |
| 34 | EOM C Y, HEO W D, CRASKE M L, et al. The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection[J]. Proc Natl Acad Sci U S A, 2004, 101(12): 4036-4040. |
| 35 | MARGOTTIN F, BOUR S P, DURAND H, et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif[J]. Mol Cell, 1998, 1(4): 565-574. |
| 36 | GUATELLI J C. Interactions of viral protein U (Vpu) with cellular factors[J]. Curr Top Microbiol Immunol, 2009, 339: 27-45. |
| 37 | TOKAREV A A, MUNGUIA J, GUATELLI J C. Serine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu[J]. J Virol, 2011, 85(1): 51-63. |
| 38 | GUSTIN J K, DOUGLAS J L, BAI Y, et al. Ubiquitination of BST-2 protein by HIV-1 Vpu protein does not require lysine, serine, or threonine residues within the BST-2 cytoplasmic domain[J]. J Biol Chem, 2012, 287(18): 14837-14850. |
| 39 | SUGDEN S M, PHAM T N Q, COHEN É A. HIV-1 vpu downmodulates ICAM-1 expression, resulting in decreased killing of infected CD4+ T cells by NK cells[J]. J Virol, 2017, 91(8): e02442-e02416. |
| 40 | VERMA S, ALI A, ARORA S, et al. Inhibition of β-TrcP-dependent ubiquitination of p53 by HIV-1 Vpu promotes p53-mediated apoptosis in human T cells[J]. Blood, 2011, 117(24): 6600-6607. |
| 41 | MUDHASANI R, TRAN J P, RETTERER C, et al. Protein kinase R degradation is essential for rift valley fever virus infection and is regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 ligase[J]. PLoS Pathog, 2016, 12(2): e1005437. |
| 42 | KAINULAINEN M, LAU S, SAMUEL C E, et al. NSs virulence factor of rift valley fever virus engages the F-box proteins FBXW11 and β-TRCP1 to degrade the antiviral protein kinase PKR[J]. J Virol, 2016, 90(13): 6140-6147. |
| 43 | YANG X Y, ZHAO X Y, ZHU Y Q, et al. FBXO34 promotes latent HIV-1 activation by post-transcriptional modulation[J]. Emerg Microbes Infect, 2022, 11(1): 2785-2799. |
| 44 | KUCHAY S, SAEED M, GIORGI C, et al. NS5A promotes constitutive degradation of IP3R3 to counteract apoptosis induced by hepatitis C virus[J]. Cell Rep, 2018, 25(4): 833-840.e3. |
| 45 | KAINULAINEN M, HABJAN M, HUBEL P, et al. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH[J]. J Virol, 2014, 88(6): 3464-3473. |
| 46 | CEN M Y, OUYANG W, LIN X H, et al. FBXO6 regulates the antiviral immune responses via mediating alveolar macrophages survival[J]. J Med Virol, 2023, 95(1): e28203. |
| 47 | TSAI M, OSMAN W, ADAIR J, et al. The E3 ligase subunit FBXO45 binds the interferon-λ receptor and promotes its degradation during influenza virus infection[J]. J Biol Chem, 2022, 298(12): 102698. |
| 48 | LAN K, VERMA S C, MURAKAMI M, et al. Kaposi’s sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein[J]. Proc Natl Acad Sci USA, 2007, 104(41): 16287-16292. |
| 49 | BARESOVA P, PITHA PM, LUBYOVA B. Kaposi sarcoma-associated herpesvirus vIRF-3 protein binds to F-box of skp2 protein and acts as a regulator of c-Myc protein function and stability[J]. J Biol Chem, 2012, 287(20): 16199-16208. |
| 50 | ISOBE T, HATTORI T, KITAGAWA K, et al. Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase[J]. J Biol Chem, 2009, 284(41): 27766-27779. |
| 51 | KNIGHT J S, SHARMA N, ROBERTSON E S. Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase[J]. Proc Natl Acad Sci U S A, 2005, 102(51): 18562-18566. |
| 52 | KNIGHT J S, SHARMA N, ROBERTSON E S. SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen[J]. Mol Cell Biol, 2005, 25(5): 1749-1763. |
| 53 | TANAKA Y, MUKAI, OHSHIMA T. HTLV-1 viral oncoprotein HBZ contributes to the enhancement of HAX-1 stability by impairing the ubiquitination pathway[J]. J Cell Physiol, 2021, 236(4): 2756-2766. |
| 54 | LIU R K, OLANO L R, MIRZAKHANYAN Y, et al. Vaccinia virus ankyrin-repeat/F-box protein targets interferon-induced IFITs for proteasomal degradation[J]. Cell Rep, 2019, 29(4): 816-828. |
| 55 | LIU Z J, NAILWAL H, RECTOR J, et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation[J]. Immunity, 2021, 54(2): 247-258. |
| 56 | XIA Y, CHENG H, BIAN W, et al. Role of an FNIP repeat domain-containing protein encoded by megavirus Baoshan during viral infection[J]. J Virol, 2022, 96(14): e0081322. |
| 57 | MITCHELL J K, BYERS N M, FRIESEN P D. Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication[J]. J Virol, 2013, 87(23): 12592-12599. |
| 58 | VAN BUUREN N, COUTURIER B, XIONG Y, et al. Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex[J]. J Virol, 2008, 82(20): 9917-9927. |
| 59 | VAN BUUREN N, BURLES K, SCHRIEWER J, et al. EVM005: an ectromelia-encoded protein with dual roles in NF-κB inhibition and virulence[J]. PLoS Pathog, 2014, 10(8): e1004326. |
| 60 | BURLES K, VAN BUUREN N, BARRY M. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB[J]. Virology, 2014, 468/470: 351-362. |
| 61 | AN X K, JIA H J, FENG Y, et al. Regulating effect of ORF128 on NF-κB signaling pathway of HEK293T cells and its mechanism[J]. Chin J Cell Mol Immunol, 2019, 35(3): 243-249. |
| 62 | CHEN B B, GLASSER J R, COON T A, et al. Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis[J]. Cell Death Dis, 2013, 4(8): e759. |
| 63 | LI P, CHEN T T, KUANG P, et al. Aurora-A/FOXO3A/SKP2 axis promotes tumor progression in clear cell renal cell carcinoma and dual-targeting Aurora-A/SKP2 shows synthetic lethality[J]. Cell Death Dis, 2022, 13(7): 606. |
| 64 | HE D H, CHEN Y F, ZHOU Y L, et al. Phytochemical library screening reveals betulinic acid as a novel Skp2-SCF E3 ligase inhibitor in non-small cell lung cancer[J]. Cancer Sci, 2021, 112(8): 3218-3232. |
| 65 | MALLAMPALLI R K, COON T A, GLASSER J R, et al. Targeting F box protein Fbxo3 to control cytokine-driven inflammation[J]. J Immunol, 2013, 191(10): 5247-5255. |
| 66 | LIN T B, HSIEH M C, LAI C Y, et al. Fbxo3-dependent Fbxl2 ubiquitination mediates neuropathic allodynia through the TRAF2/TNIK/GluR1 cascade[J]. J Neurosci, 2015, 35(50): 16545-16560. |
| [1] | Zhaochun WU,You LI,Jiawen HE,Keqi LIAO,Shengnan LI. Construction of PRDM5 over-expression lentivirus vector and establishment of stably transfected Neuro-2a cells [J]. Journal of Jilin University(Medicine Edition), 2025, 51(1): 1-8. |
| [2] | Xiaofeng LI,Meihui Cheng,Yang LIU,Changcheng LIU,Xuejiao JIA,Mengqi LIU,Wei ZHAO. Inhibitory effect of Lactobacillus reuteri on rotavirus replication in vivo and in vitro and its effect on expression of immune factors [J]. Journal of Jilin University(Medicine Edition), 2024, 50(6): 1597-1605. |
| [3] | Yuxuan CAO,Wei CHEN,Chengbiao SUN,Na ZHAO,Yan WANG,Mingxin DONG,Na XU,Wensen LIU,Yongmei LI. Damage effect of VSV on vascular endothelial barrier function in vitro and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2024, 50(5): 1275-1285. |
| [4] | Like LUO,Ziwen CHENG,Kuo CHENG,Yonggang LI,Dawei WANG,Baoling YANG. Expression and localization of fever with thrombocytopenia syndrome virus nonstructural protein and screening and analysis of host-interacting proteins [J]. Journal of Jilin University(Medicine Edition), 2024, 50(5): 1286-1296. |
| [5] | Lyuyin SUN,Zhuping MA,Runlin LI,Yonggang LI,Xiaoli TAO. Screening of host proteins interacting with Nelson Bay orthoreovirus σNS based on yeast two-hybrid technology [J]. Journal of Jilin University(Medicine Edition), 2024, 50(5): 1313-1321. |
| [6] | Shengnan LI,Jiawen HE,Keqi LIAO,You LI. Construction of dedicator of cytokinesis 4 over-expressed lentivirus vector and establishment of stable transfected Neuro-2a cells [J]. Journal of Jilin University(Medicine Edition), 2024, 50(5): 1322-1329. |
| [7] | Guofeng HUANG,Congyi LI,Hong WANG,Wenyan ZHANG. Research progress in inhibitors of structural protein Gag-Pol of human immunodeficiency virus and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2024, 50(4): 1156-1163. |
| [8] | Jiawen HE,You LI,Keqi LIAO,Shengnan LI. Construction of EIF4A3 shRNA lentiviral vector and establishment of its stable transfection cell line [J]. Journal of Jilin University(Medicine Edition), 2024, 50(3): 831-839. |
| [9] | Haitao SU,Yue ZHAI,Xiuling SONG,Kun XU. Preparation of IgY against herpes simplex virus-1 and detection of its biological activity [J]. Journal of Jilin University(Medicine Edition), 2024, 50(2): 303-309. |
| [10] | Zhongyan ZHAO,Zhiyu XU,Chanji WU,Eryi ZHAO,Dan HUANG,Shixiong HUANG. Autoimmune encephalitis with double positive anti-NMDAR and anti-GABABR secondary to herpes simplex virus encephalitis: A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2024, 50(1): 236-242. |
| [11] | Guangcai WAN,Ting LI,Weixiu SUN,Xiuyan YU. Modification and effect evaluation of pretreatment methods for rapid detection specimens of SARS-CoV-2 [J]. Journal of Jilin University(Medicine Edition), 2023, 49(6): 1649-1654. |
| [12] | Yaqi XU,Yanyu WANG,Wenjing ZHANG,Mei HAN,Huaxia MU,Xi YANG,Weixiao BU,Zikun TAO,Yujia KONG,Fuyan SHI,Suzhen WANG. Bioinformatics analysis on screening of key genes of hepatitis B virus-related hepatocellular carcinoma and its relationship with prognosis [J]. Journal of Jilin University(Medicine Edition), 2023, 49(5): 1243-1252. |
| [13] | Yang LIU,Meiling YU,Meihui CHENG,Changcheng LIU,Xuejiao JIA,Mengqi LIU,Yonggang LI,Wei ZHAO. Inhibitory effect of Enterococcus faecalis on rotavirus SA11 strain replication in in vitro cell model and suckling rat rotavirus infection model [J]. Journal of Jilin University(Medicine Edition), 2023, 49(1): 131-138. |
| [14] | Wenyu WU,Chengxin LIU,Kai WANG,Peng WU,Shaofeng ZHAN,Xiaohong LIU. Non-Hodgkin’s lymphoma complicated with human coronavirus HKU1 pneumonia:A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2023, 49(1): 187-192. |
| [15] | Rongxia JIA,Xu ZHOU,Zhikun SHI,Meijing BAO,Guanqun WANG,Yuqing CHU,Yang LIN. Analysis on risk factors for disease progression of patients with cervical intraepithelial neoplasia Ⅰ [J]. Journal of Jilin University(Medicine Edition), 2022, 48(6): 1528-1534. |
|
||
