吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1161-1172.doi: 10.13278/j.cnki.jjuese.20190041
• 地质工程与环境工程 • 上一篇
段云星, 杨浩
Duan Yunxing, Yang Hao
摘要: 为了综合分析增强型地热系统各参数对系统采热性能的影响,以及参数相互之间的影响规律,以云南腾冲热海热田为地质背景,利用正交设计思想通过数值模拟方法对井间距、注入流量、注入温度、储层渗透率等因素的变化进行了分析。结果表明:注入流量是影响系统采热性能的关键因素,并对注入温度、井间距的确定有显著影响;注入流量越大,系统稳定采热时间和运行寿命越短,且注入流量较小的变化(提高0.06 m3/s)会对系统采热温度产生较大的影响(降低47℃);增加注入温度可以提高系统的采热温度和运行寿命,但注入温度升高30℃、运行50 a后采热温度只提高10℃,效果有限;井间距、渗透率、开采压力对系统采热性能的影响相近,且远小于注入流量。
中图分类号:
[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Evaluation of Geothermal Resources Potential for Dry Hot Rock in China Mainland[J]. Science & Technology Review, 2012, 30(42):25-31. [2] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4):1139-1152. [3] 凌璐璐, 苏正, 翟海珍, 等. 西藏羊易EGS开发储层温度场与开采寿命影响因素数值模拟研究[J]. 新能源进展, 2015, 3(5):367-374. Ling Lulu, Su Zheng, Zhai Haizhen, et al. Numerical Simulation Study of the Parameters Effect on Temperature Distribution and Mining Life During EGS Exploitation, Yangyi of Tibet[J]. Advances in New And Renewable Energy, 2015, 3(5):367-374. [4] 陈继良, 蒋方明. 增强型地热系统热开采过程的数值模拟研究[J]. 新能源进展, 2013, 1(2):189-195. Chen Jiliang, Jiang Fangming. A Numerical Study to Heat Mining Process of Enhanced Geothermal Systems[J]. Advances in New and Renewable Energy, 2013, 1(2):189-195. [5] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12):111-117. Chen Jiliang, Jiang Fangming. A Numerical Study on Heat Extraction Performance of Enhanced Geothermal Systems[J]. Renewable Energy Resources, 2013, 31(12):111-117. [6] 岳高凡, 邓晓飞, 邢林啸, 等.共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报, 2014, 33(19):62-67. Yue Gaofan, Deng Xiaofei, Xing Linxiao, et al. Numerical Simulation of Hot Dry Rock Exploitation Using Enhanced Geothermal Systems in Gonghe Basin[J]. Science & Technology Review, 2014, 33(19):62-67. [7] 杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7):1130-1137. Yang Yanlin, Jing Jing, Wang Fugang. Optimal Design of Well Spacing on CO2 Enhanced Geothermal[J]. Acta Energiae Solaris Sinica, 2014, 35(7):1130-1137. [8] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19):22-27. Gan Haonan, Wang Guiling, Lin Wenjing. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China[J]. Science & Technology Review, 2015, 33(19):22-27. [9] 徐青, 李翠华, 汪缉安, 等. 云南地热资源:以腾冲地区为重点进行解剖[J]. 地质地球化学, 1997(4):77-84. Xu Qing, Li Cuihua, Wang Ji'an, et al. Geothermal Resources in Tengchong Region Yunnan Province[J]. Geology-Geochemistry, 1997(4):77-84. [10] 廖志杰, 尹正武, 贾希义, 等. 腾冲热海地热田的概念模型[J]. 高校地质学报, 1997,3(2):85-94. Liao Zhijie, Yin Zhengwu, Jia Xiyi. Conceptual Model of the Rehai (Hot Sea) Geothermal Field in Tengchong, Yunnan Province,China[J]. Geology Journal of Chinese University, 1997, 3(2):85-94. [11] 上官志冠. 腾冲热海地热田热储结构与岩浆热源的温度[J]. 岩石学报, 2000,16(1):83-90. Shangguan Zhiguan. Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong[J]. Acta Petrologica Sinica, 2000, 16(1):83-90. [12] 赵慈平, 冉华, 陈坤华. 由相对地热梯度推断的腾冲火山区现存岩浆囊[J]. 岩石学报, 2006, 22(6):1517-1528. Zhao Ciping, Ran Hua, Chen Kunhua. Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient[J]. Acta Petrologica Sinica, 2006,22(6):1517-1528. [13] 方娜. 腾冲热海地热田地质特征及形成机制研究[D]. 昆明:昆明理工大学, 2013. Fang Na. Geological Characteristics and Formation Mechanism of Tengchong Rehai Geothermal Field[D]. Kunming:Kunming University of Science and Technology, 2013. [14] 郭婷婷. 云南腾冲热海地热田特征及成因研究[D]. 昆明:昆明理工大学, 2013. Guo Tingting. Study on Characteristics and Genesis of Rehai Geothermal Field in Yunnan[D]. Kunming:Kunming University of Science and Technology, 2013. [15] 李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例[J]. 地球科学, 2015, 40(9):1576-1584. Li Jiexiang, Guo Qinghai, Wang Yanxin. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Process During Ascent to Surface:A Case Study in Rehai Geothermal Field Tengchong[J]. Earth Science, 2015, 40(9):1576-1584. [16] 全国地质资料馆/数字地质资料馆. 1:20万地质图G4727幅数据[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E. National Geological Archive/Digital Geological Archive. 1:200000 Geological Maps G4727 Data[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E. [17] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D]. 北京:中国地质大学(北京), 2017. Duan Yunxing. Study on Numerical Simulation of Well Pattern Optimization for Exploitation of Dry Hot Rock Geothermal Resources[D]. Beijing:China University of Geosciences (Beijing), 2017. [18] 孙培德, 杨东全, 陈奕柏. 多物理场耦合模型及数值模拟导论[M]. 北京:中国科学技术出版社, 2007:113-116. Sun Peide, Yang Dongquan, Chen Yibo. Introduction to Coupling Models for Multiphysics and Numerical Simulations[M]. Beijing:Science and Technology Press of China, 2007:113-116. [19] 赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京:科学出版社, 2004:15-30. Zhao Yangsheng, Wan Zhijun, Kang Jianrong. Introduction to Development of Hot Rock[M]. Beijing:Science Press, 2004:15-30. [20] Leary P, Malin P. Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data[J]. Energies, 2017, 10(12):1979. [21] Guo L L, Zhang Y B. Experimental investigation of Granite Properties Under Different Temperatures and Pressures and Numerical Analysis of Damage Effect in Enhanced Geothermal System[J]. Renewable Energy, 2018, 12(6):107-125. [22] Kong Y L, Pang Z H. Optimization of Well-Doublet Placement in Geothermal Reservoirs Using Numerical Simulation and Economic Analysis[J]. Environment Earth Science, 2017,76:118. [23] Pandey S N, Vishal V. Sensitivity Analysis of Coupled Processes and Parameters on the Performance of Enhanced Geothermal Systems[J]. Science Report, 2017, 7:17057. [24] Liu J, Cheng W L. The Stratigraphic and Operating Parameters Influence on Economic Analysis for Enhanced Geothermal Double Wells Utilization System[J]. Energy, 2018, 159:264-276. [25] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J].中国石油大学学报(自然科学版), 2016, 40(6):109-117. Sun Zhixue, Xu Yi, Lü Shuhuan. A Thermos-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems[J]. Journal of China University of Petroleum, 2016, 40(6):109-117. [26] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6):1723-1731. Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1723-1731. [27] 樊冬艳, 孙海, 姚军, 等. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3):798-807. Fan Dongyan, Sun Hai, Yao Jun, et al. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):797-806. |
[1] | 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138. |
[2] | 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731. |
[3] | 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705. |
[4] | 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679. |
[5] | 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108. |
[6] | 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072. |
[7] | 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761. |
[8] | 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806. |
[9] | 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538. |
[10] | 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492. |
[11] | 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433. |
[12] | 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880. |
[13] | 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716. |
[14] | 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235. |
[15] | 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533. |
|