吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1416-1426.doi: 10.13278/j.cnki.jjuese.20200313
蔡晓光1,2,3, 徐洪路1, 李思汉4, 张少秋1
Cai Xiaoguang1,2,3, Xu Honglu1, Li Sihan4, Zhang Shaoqiu1
摘要: 返包式加筋土挡墙是一种柔性面板挡墙,因其良好的地基适应性及地震安全性广泛应用于交通、市政和水利等诸多领域中。本文使用FLAC3D数值模拟程序对返包式加筋土挡墙墙面坡度、土工袋填料及筋材强度进行了抗震性能研究。研究结果表明:当墙面坡度<1∶0.30时,墙后侧向土压力分布均匀且数值较小,近似于一条竖向直线;当墙面坡度≥1∶0.30时,墙后侧向土压力分布规律一致且符合朗肯土压力理论。因此,当墙面坡度<1∶0.30时,加筋土结构应按加筋土边坡进行设计;当墙面坡度≥1∶0.30时,加筋土结构应按加筋土挡墙进行设计。土工袋填料种类对返包式加筋土挡墙地震动力响应几乎没有影响,在抗震设计时可不考虑其对挡墙的影响。筋材强度越高,返包式加筋土挡墙抗震性能越好,但筋材强度与挡墙的抗震性能不成正比例,由于加筋土结构的"加筋作用饱和"现象,大幅度提升筋材强度并不会使挡墙的抗震性能得到大幅度提升;因此,工程中在保证筋材强度达标的前提下需注意经济性。
中图分类号:
[1] Tatsuoka F, Tateyama M, Koseki J, et al.Geosynthetic-Reinforced Soil Structures for Railways:Twenty Five Year Experiences in Japan[J]. Geotechnical Engineering, 2014, 45(1):1-16. [2] Huang C C, Chou L H, Tatsuoka F. Seismic Displacement of Geosynthetic Reinforced Soil Modular Block Walls[J]. Geosynthetics International, 2003, 10(1):2-23. [3] Sandri D. A Performance Summary of Reinforced Soil Structures in the Greater Los Angeles Area After the Northridge Earthquake[J]. Geotextiles and Geomembranes, 1997, 15(4/5/6):235-253. [4] 杨广庆. 土工合成材料加筋土结构应用技术指南[M]. 北京:人民交通出版社, 2016. Yang Guangqing. Technical Guidelines for the Application of Geosynthetic Reinforced Earth Structures[M]. Beijing:People's Communications Press, 2016. [5] 杨圣春. 包裹式加筋土挡墙关键参数研究[D]. 成都:西南交通大学, 2009. Yang Shengchun. Research on Key Parameters of Wrapped Reinforced Earth Retaining Wall[D]. Chengdu:Southwest Jiaotong University, 2009. [6] Sakaguchi M, Muramatsu M, Nagura K. A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance[C]//Proceedings of the International Symposium on Earth Reinforcement Practice. Kyushu:International Symposium on Earth Reinforcement Association, 1992:287-292. [7] 崔俊杰, 韩会勋. 包裹式加筋土挡土墙稳定性分析探讨[C]//第三届加筋土工程学术研讨会论文集. 重庆:中国土工合成材料工程协会, 1990:18-23. Cui Junjie, Han Huixun. Discussion on Stability Analysis of Wrapped Reinforced Earth Retaining Wall[C]//Proceedings of the 3rd Symposium on Reinforced Soil Engineering. Chongqing:China Technical Association on Geosynthetics, 1990:18-23. [8] Krishna A M, Latha G M. Modeling the Dynamic Response of Wrap-Faced Reinforced Soil Retaining Walls[J]. International Journal of Geomechanics, 2012, 12(4):439-450. [9] 朱宏伟, 姚令侃, 刘兆生, 等. 地震作用下柔性挡墙变形特征分析[J]. 岩石力学与工程学报, 2012, 31(增刊1):2829-2838. Zhu Hongwei, Yao Lingkan, Liu Zhaosheng, et al. Analysis of Deformation Characteristics of Flexible Retaining Wall Under Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup.1):2829-2838. [10] Bhattacharjee A, Murali K A. Development of Numerical Model of Wrap-Faced Walls Subjected to Seismic Excitation[J]. Geosynthetics International, 2012, 19(5):354-369. [11] Liu H, Ling H I. Seismic Responses of Reinforced Soil Retaining Walls and the Strain Softening of Backfill Soils[J]. International Journal of Geomechanics, 2012, 12:351-356. [12] 李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4):605-610. Li Guangxin. Some Problems on Reinforcement Design of Geosynthetics[J]. Journal of Geotechnical Engineering, 2013, 35(4):605-610. [13] Li C, Espinoza R D. Assessment of Reinforced Embankment Stability over Soft Soils Based on Monitoring Results[J]. Geosynthetics International, 2017, 24(3):264-279. [14] Ardah A, Abu-Farsakh M, Voyiadjis G. Numerical Evaluation of the Performance of a Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) Under Different Loading Conditions[J]. Geotextiles and Geomembranes, 2017, 45(6):558-569. [15] 洪勇, 李子睿, 唐少帅, 等. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1814-1822. [16] 土工合成材料应用技术规范:GB/T 50290-2014[S]. 北京:中国计划出版社, 2014. Technical Specification for Application of Geosynthetics:GB/T 50290-2014[S]. Beijing:China Planning Press, 2014. [17] 铁路路基设计规范:TB J 447-2016[S]. 北京:国家铁路局, 2016. Code for Design of Railway Subgrade:TB J 447-2016[S]. Beijing:State Railway Administration, 2016. [18] 水电工程水工建筑物抗震设计规范:NB 35047-2015[S]. 北京:中国电力出版社, 2015. Code for Seismic Design of Hydropower Buildings:NB 35047-2015[S]. Beijing:China Electric Power Engineering Press, 2015. [19] 公路路基设计规范:ITG D30-2015[S]. 北京:人民交通出版社, 2015. Code for Design of Highway Subgrade:ITG D30-2015[S]. Beijing:People's Communications Press, 2015. [20] 王博军. 生态袋加筋挡墙工作机理研究[D].天津:河北工业大学, 2014. Wang Bojun. Study on Working Mechanism of Ecological Bag Reinforced Retaining Wall[D]. Tianjin:Hebei University of Technology, 2014. [21] 刘华北. 水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J]. 岩土工程学报, 2006, 28(5):594-599. Liu Huabei. Dynamic Analysis of Geogrid Reinforced Soil Retaining Wall Under Horizontal and Vertical Earthquake Action[J]. Journal of Geotechnical Engineering, 2006, 28(5):594-599. [22] 冯复兴. 地震作用下面板对加筋土挡墙稳定性影响研究[J]. 石家庄铁道大学学报(自然科学版), 2014, 27(增刊1):193-195. Feng Fuxing. Research on the Influence of Panel on the Stability of Reinforced Soil Retaining Wall under Earthquake[J]. Journal of Shijiazhuang Railway University (Natural Science Edition), 2014, 27(Sup.1):193-195. [23] 李思汉. 模块式加筋土挡墙动力反应试验研究及数值分析[D].廊坊:防灾科技学院, 2018. Li Sihan. Test Study and Numerical Analysis of Dynamic Response of Block Reinforced Soil Retaining Wall[D]. Langfang:Institute of Disaster Prevention, 2018. [24] 路彤. 复合式格宾土工格栅加筋土挡墙动力特性振动台试验分析[D].廊坊:防灾科技学院, 2019. Lu Tong. Shaking Table Test Analysis of Dynamic Characteristics of Composite Gabion and Geogrid Reinforced Soil Retaining Wall[D]. Langfang:Institute of Disaster Prevention, 2019. [25] Koseki J. Use of Geosynthetics to Improve Seismic Performance of Earth Structures[J]. Geotextiles & Geomembranes, 2012, 34:51-68. [26] 刘国勇, 邓杰文, 张继平. 基于FLAC3D的返包式砂泥岩加筋挡墙稳定性分析[J]. 路基工程, 2015(2):67-70. Liu Guoyong, Deng Jiewen, Zhang Jiping. Stability Analysis of Sand Shale Reinforced Retaining Wall Based on FLAC3D[J]. Subgrade Engineering, 2015(2):67-70. [27] Yu Y, Bathurst R J, Allen T M. Numerical Modelling of Two Full-Scale Reinforced Soil Wrapped-Face Walls[J]. Geotextiles & Geomembranes, 2017, 45(4):237-249. [28] Bhattacharjee A, Krishna A M. Development of Numerical Model of Wrap-Faced Walls Subjected to Seismic Excitation[J]. Geosynthetics International, 2012, 19(5):354-369. [29] 杨广庆. 加筋挡土墙合理设计方法的探讨[J]. 长江科学院院报, 2014, 31(3):11-18. Yang Guangqing. Discussion on Reasonable Design Method of Reinforced Retaining Wall[J]. Journal of Yangtze River Academy of Sciences, 2014, 31(3):11-18. [30] 牛笑笛, 杨广庆, 王贺, 等. 不同面板形式加筋土挡墙结构特性现场试验研究[J]. 岩土力学, 2021, 42(1):1-11. Niu Xiaodi, Yang Guangqing, Wang He, et al. Field Test Study on Structural Characteristics of Reinforced Soil Retaining Wall with Different Panel Forms[J]. Geotechnical Mechanics, 2021, 42(1):1-11. |
[1] | 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788. |
[2] | 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800. |
[3] | 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451. |
[4] | 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522. |
[5] | 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638. |
[6] | 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853. |
[7] | 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138. |
[8] | 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172. |
[9] | 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705. |
[10] | 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679. |
[11] | 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731. |
[12] | 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072. |
[13] | 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108. |
[14] | 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761. |
[15] | 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538. |
|