吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (6): 1812-1825.doi: 10.13278/j.cnki.jjuese.20230295

• 地质工程与环境工程 • 上一篇    下一篇

冻融循环对钙剂改良土体分散性效果的影响

苑晓青1,吴泽炬1,王清1,陈慧娥1,林森2,牛岑岑1,徐鑫1   

  1. 1.吉林大学建设工程学院,长春130026
    2.吉林省水利水电勘测设计研究院,长春130021
  • 出版日期:2023-11-26 发布日期:2023-12-13
  • 基金资助:
    国家自然科学基金项目(42172301,42330708,42272316,42102315);吉林省教育厅项目(JJKH20231183KJ,JJKH20231184KJ,JJKH20231187KJ)

Effect of Freeze-Thaw Cycle on the Improvement of Dispersed Soil by Calcium Ion Agent

Yuan Xiaoqing1,Wu Zeju1,Wang Qing1,Chen Huie1,Lin Sen2,Niu Cencen1,Xu Xin1   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China
    2. Jilin Province Water Resources and Hydropower Survey and Design Institute, Changchun 130021, China
  • Online:2023-11-26 Published:2023-12-13
  • Supported by:
     the National Natural Science Foundation of China (42172301,42330708,42272316,42102315) and the Project of Jilin Provincial Department of Education (JJKH20231183KJ,JJKH20231184KJ,JJKH20231187KJ)

摘要: 分散性土的水稳性极差,易形成管涌、洞穴、冲沟等破坏,季冻区土体在冻融循环过程所发生的冻胀融沉作用可能会增强土体的分散性。为了研究不同钙剂对土体分散性改良效果及冻融循环对改良效果的影响,先采用氧化钙和氯化钙两种钙离子剂对吉林西部地区分散性土体进行改良,确定最佳掺量后进行冻融循环试验;再分别通过分散性鉴定试验、无侧限抗压强度试验及微观结构试验探讨冻融循环对土体分散性改良效果的影响。试验结果表明,氯化钙对吉林西部土体分散性的改良效果优于氧化钙,氧化钙改良分散性土的最优掺量为1.6%,氯化钙改良分散性土的最优掺量为0.4%。冻融循环试验采用掺量为0.4%的氯化钙改良土。氯化钙改良土在经历不同次数的冻融循环后仍为非分散性土,其无侧限抗压强度在冻融循环次数0~5次有明显下降,但在冻融循环超过10次后下降趋势变缓且抗压强度基本保持在60 kPa;通过观察掺量为0.4%的氯化钙改良土在不同冻融循环次数的扫描电镜图像,推测冻融循环10次后其裂隙和孔隙的状态已趋于稳定。上述试验结果说明氯化钙可作为一种良好的改良剂对季冻区土体的分散性进行改良。 

关键词: 分散性土, 氯化钙, 氧化钙, 冻融循环, 无侧限抗压强度, 微观结构

Abstract:  The dispersed soil has very poor water stability and is prone to damage such as pipe surges, caves, gullies and other damage. The seasonal frozen soil may enhance its dispersion during the freeze-thaw cycle in seasonal freezing area. In order to study the effect of different calcium agents on soil dispersion improvement and the influence of freeze-thaw cycle on the improvement effect, first,two kinds of calcium ionizers, calcium oxide and calcium chloride, were used to improve the dispersed soil in the western area of Jilin, and the optimum mixing dosage was determined to carry out the freeze-thaw cycle test. Then, the influence of freeze-thaw cycle on the improvement of soil dispersion was discussed by dispersive identification test, unconfined compressive strength test and microstructure test respectively. The test results showed that the improvement effect of calcium chloride on soil dispersion in western Jilin was better than that of calcium oxide, and the optimum mixing dosage of calcium oxide for improving dispersed soil was 1.6%, while the optimum mixing dosage of calcium chloride for improving dispersed soil only was 0.4%. The calcium chloride improved soil of 0.4% was used in freeze-thaw cycle test, it was still non-dispersive soil after different times of freeze-thaw cycle, and its unconfined compressive strength was a significant decline in the number of freeze-thaw cycles of 0-5 times. However, the decline tendency slowed down and the compressive strength was basically at 60 kPa after more than ten freeze-thaw cycles. By observing the scanning electron microscope images of the improved soil with 0.4% calcium chloride in different times of freeze-thaw cycles, it is assumed that the state of the cracks and pores of the improved soil tend to be stable after 10 times of freeze-thaw cycles. The above test results show that calcium chloride can be used as a good ameliorator to improve the soil dispersion in seasonal freezing zone.

Key words: dispersed soil, calcium chloride, calcium oxide, freeze-thaw cycle, unconfined compressive strength, microstructure

中图分类号: 

  • P642
[1] 赵越, 李磊, 闫晗, 肖万山, 苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1195-1203.
[2] 张琦, 杨忠年, 时伟, 凌贤长, 涂志斌. 冻融循环下初始含水率对非饱和膨胀土剪切特性试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1544-1550.
[3] 吕建航, 杨忠年, 时伟, 李国玉, 凌贤长, 张莹莹. 冻融循环下加筋膨胀土边坡稳定性模型试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1587-1596.
[4] 王清, 汪洲, 韩梦霞, 刘经. 疏水材料处理吉林西部乾安地区盐渍土的力学强度试验[J]. 吉林大学学报(地球科学版), 2021, 51(3): 804-814.
[5] 陈剑平, 刘经, 王清, 韩岩, 王加奇, 李兴华. 含水率对分散性土抗剪强度特性影响的微观解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 792-803.
[6] 徐新木, 张耀平, 付玉华, 雷大星, 邹雄刚. 冻融循环下含节理类岩石试样剪切破坏特性[J]. 吉林大学学报(地球科学版), 2021, 51(2): 483-494.
[7] 洪勃, 李喜安, 王力, 李林翠. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397.
[8] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[9] 苟富刚, 龚绪龙, 王光亚. 连云港海相软土不排水强度特征[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1165-1173.
[10] 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847.
[11] 宿晓萍,王清,王文华,孙昊月. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1244-1253.
[12] 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914.
[13] 安玉科, 佴磊. 冻融循环作用下节理岩体锚固性能退化机理和模式[J]. J4, 2012, 42(2): 462-467.
[14] 牛岑岑, 王清, 苑晓青, 杨静, 宋晶, 王吉亮. 渗流作用下吹填土微观结构特征定量化研究[J]. J4, 2011, 41(4): 1104-1109.
[15] 赵安平, 王清, 张中琼. 土体微观结构对冻胀影响的灰色关联及粗糙集评价[J]. J4, 2011, 41(3): 791-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程祖锋,孙秀娟,崔吉馨. 混凝土腐蚀的正交试验研究[J]. J4, 2007, 37(5): 978 -0982 .
[2] 单敬福, 王峰, 孙海雷, 孙继刚, 蒙启安. 蒙古国境内贝尔湖凹陷早白垩世沉积充填演化与同沉积断裂的响应[J]. J4, 2010, 40(3): 509 -518 .
[3] 李智强, 范宜仁, 邓少贵, 季秀峰, 李虎. 基于改进差分进化算法的阵列侧向测井反演[J]. J4, 2010, 40(5): 1199 -1204 .
[4] 马见青, 李庆春. 面波压制的TT变换法[J]. J4, 2011, 41(2): 565 -571 .
[5] 姜利国, 梁冰. 地球化学作用下饱和-非饱和介质水力-传质-传热耦合模型[J]. J4, 2011, 41(5): 1529 -1534 .
[6] 于晓飞,侯增谦,张晗,钱烨,李碧乐. 吉林永吉县大黑山斑岩型钼矿床成矿流体地球化学特征及成矿机制[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1688 -1699 .
[7] 张春艳, 张兴洲, 邱殿明. 延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J]. J4, 2007, 37(4): 672 -0677 .
[8] 刘永江, Franz Neubauer, 李伟民, Johann Genser, 李伟. 柴北缘-南祁连地区构造热事件[J]. J4, 2012, 42(5): 1317 -1329 .
[9] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624 -1636 .
[10] 贾大成,邢立新, 潘 军, M. J. van Bergen, H. van Roermund. 伊通上地幔剪切带捕虏体中富铝尖晶石的地球化学特征[J]. J4, 2006, 36(04): 497 -502 .