吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1493-1501.doi: 10.13278/j.cnki.jjuese.201505204

• 地质工程与环境工程 • 上一篇    下一篇

增强地热系统热储层-盐水-CO2相互作用

那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪   

  1. 吉林大学环境与资源学院/地下水资源与环境教育部重点实验室, 长春 130021
  • 收稿日期:2014-12-23 发布日期:2015-09-26
  • 通讯作者: 冯波(1982),男,讲师,主要从事地下能源与废物处置方面的研究,E-mail:fengbo82@126.com。 E-mail:fengbo82@126.com
  • 作者简介:那金(1987),男,博士研究生,主要从事地下能源与废物处置方面的研究,E-mail:na_jin@126.com
  • 基金资助:

    国家"863"计划项目(2012AA052801);高等学校博士学科点专项科研基金项目(20110061110057);吉林大学研究生创新基金资助项目(2015083,2015107)

Interaction of Rock-Brine-Supercritical CO2 in CO2-EGS Reservoir

Na Jin, Xu Tianfu, Wei Mingcong, Feng Bo, Bao Xinhua, Jiang Xue   

  1. College of Enviroment and Resources, Jilin University/Key Lab of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, China
  • Received:2014-12-23 Published:2015-09-26

摘要:

增强型地热系统(EGS)是采用人工形成地热储层的方法,从低渗透性岩体中经济地采出深层热能的人工地热系统。以CO2为载热流体的增强地热能系统(CO2-EGS)是实现CO2减排和深部地热资源开发的有效手段,系统运行时的水-岩-气相互作用对热储层孔渗特征有着重要影响,最终会影响储层的产热能力。笔者利用高温高压反应釜模拟CO2-EGS高温下的热储层-盐水-CO2的相互作用,通过对实验中反应液离子成分变化和岩样扫描电镜进行分析,结果表明:实验后的钾长石和方解石出现溶解现象,且方解石溶蚀剧烈;岩样表面出现极少量次生方解石和钠长石,并有新矿物析出,其主要组成元素为C、O、Si、Fe,为菱铁矿的中间产物。通过TOUGHREACT建立反应性溶质运移模型,模拟上述实验的化学反应过程,模拟结果和实验数据拟合较好。该研究可为CO2-EGS的水-岩-气作用机制提供地球化学数据。

关键词: CO2-EGS, 水-岩-气相互作用, 数值模拟, 干热岩, 松辽盆地

Abstract:

Enhanced geothermal system (EGS) is an engineered reservoir that has been created to extract economical amounts of heat from geothermal resources with low permeability and/or porosity. CO2 enhanced geothermal system is a technology of geological storage of carbon with geothermal energy development. When the supercritical CO2 is injected into a deep reservoir, the surrounding rock will be dissolved or precipitated, and the porosity and permeability of the rock will also be changed. The interaction of rock-brine-supercritical CO2 in CO2-EGS was simulated by high-temperature & pressure reactor. The changes of ion compositions in the solution and scanning electron microscope of rock core showed that K-feldspar and calcite dissolved after the experiment, especially dissolution of calcite is too strong to be saturated. Meanwhile a very small amount of secondary calcite and albite were generated, with the generation of a new kind of mineral which is likely to be the intermediate product of siderite composed of C,O,Si, and Fe. The chemical reactions in the experiments were simulated by reactive transport modelling using TOUGHREACT. The information currently available by numerical simulations is generally consistent with the results from the laboratory experiment. This study provided geochemical evidences for chemical interaction mechanisms in CO2-EGS.

Key words: CO2-EGS, interaction of rock-brine-supercritical CO2, reactive transport simulations, hot dry rock, Songliao basin

中图分类号: 

  • P641

[1] Liu L,Suto Y,Bignall G,et al.CO2 Injection to Granite and Sandstone in Experimental Rock/Hot Water Systems[J]. Energy Conversion & Management, 2003, 44:1399-1410.

[2] Ueda A, Kato K, Ohsumi T, et al. Experimental Studies of CO2-Rock Interaction at Elevated Temperatures Under Hydrothermal Conditions[J]. Geochem, 2005, 39:417-425.

[3] Kaieda H, Ueda A, Kubota K, et al. Field Experiments for Studying on CO2 Sequestration in Solid Minerals at the Ogachi HDR Geothermal Site, Japan[C]// Proceedings 34th Workshop on Geothermal Reservoir Engineering. Stanford:Stanford University, 2009.

[4] Wan Yuyu, Pruess K, Xu Tianfu. Impact of Fluid-Rock Interactions on Enhanced Geothermal Systems With CO2 as Heat Transmission Fluid[C]//Procee-dings 36th Workshop on Geothermal Reservoir Engineering. Stanford:Stanford University, 2011.

[5] Xu T, Pruess K. Reactive Transport Modeling to Study Fluid-Rock Interactions in Enhanced Geothermal Systems (EGS) with CO2 as Working Fluid[C]//World Geothermal Congress. Bali: International Geothermal Association, 2010: 25-29.

[6] 刘伟.大庆徐家围子地区水性分布规律及预测[D].杭州:浙江大学, 2010. Liu Wei. Water Distribution and Prediction in Xujiaweizi,Daqing[D]. Hangzhou: Zhejiang University, 2010.

[7] 杨晓辉.徐家围子断陷地层水地化特征与油气藏的关系[D].大庆:大庆石油学院, 2009. Yang Xiaohui. Chemical Features of Formation Water and the Relationships with Oil/Gas Pool in Xujiaweizi Fault Depression[D]. Daqing:Daqing Petroleum Institute, 2009.

[8] 王广华, 赵静, 张凤君, 等.砂岩储层中CO2-地层水-岩石的相互作用[J].中南大学学报:自然科学版, 2013(3):1167-1173. Wang Guanghua, Zhao Jing, Zhang Fengjun,et al. Interactions of CO2-Brine-Rock in Sandstone Reservoir[J]. Journal of Central South University:Science and Technology, 2013(3): 1167-1173.

[9] Borgia A, Pruess K, Kneafsey T J, et al. Numerical Simulation of Salt Precipitation in the Fractures of a CO2 Enhanced Geothermal System[J]. Geothermics, 2012, 44(3): 13-22.

[10] 朱焕来, 曲希玉, 刘立, 等. CO2流体-长石相互作用实验研究[J]. 吉林大学学报:地球科学版,2011, 41(3):697-706. Zhu Huanlai, Qu Xiyu, Liu Li, et al.Study on Inter-action Between the Feldspar and CO2 Fluid[J]. Journal of Jilin University:Earth Science Edition,2011, 41(3):697-706.

[11] Wandrey M, Fischer S, Zemke K, et al. Monitoring Petrophysical, Mineralogical, Geochemical and Microbiological Effects of CO2 Exposure:Results of Long-Term Experiments Under in Situconditions[J]. Energy Procedia, 2011, 4: 3644-3650.

[12] 于志超, 杨思玉, 刘立.饱和CO2地层水驱过程中的水-岩相互作用实验[J].石油学报,2012, 33(6):1032-1042. Yu Zhichao, Yang Siyu, Liu Li. An Experimemtal Study on Water-Rock Interaction During Water Flooding in Formations Saturated with CO2[J]. Acta Petrolei Sinica, 2012, 33(6): 1032-1042.

[13] Huq F,Blum P,Marks M A W,et al.Chemical Chan-ges in Fluid Composition Due to CO2 Injection in the Altmark Gas Field: Preliminary Results from Batch Experiments[J]. Environmental Earth Sciences, 2012, 67(2): 385-394.

[14] Dove P M, Crerar D A. Kinetics of Quartz Dissolution in Electrolyte Solutions Using a Hydrothermal Mixed Flow Reactor[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 955-969.

[15] 万玉玉.鄂尔多斯盆地深部咸水层CO2地质储存中的迁移转化特征[D].长春:吉林大学,2012. Wan Yuyu. Migration and Transformation of CO2 in CO2 Geological Sequestration Process of Shiqianfeng Saline Aquifers in Orods Basin[D]. Changchun: Jilin University, 2012.

[16] 许天福, 金光荣, 岳高凡, 等.地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J]. 吉林大学学报:地球科学版, 2012, 42(5): 1410-1425. Xu Tianfu, Jin Guangrong, Yue Gaofan, et al. Subsurface Reactive Transport Modeling :A New Research Approach for Geo-Resources and Evironment[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(5): 1410-1425.

[17] Xu T. Numerical Simulation to Study the Feasibility of Using CO2 as a Stimulation Agent for Enhanced Feothermal Systems[R].Berkeley: Lawrence Berkeley National Laboratory, 2010.

[18] Xu T, Rose P, Fayer S, et al. On Modeling of Chemical Stimulation of an Enhanced Geothermal System Using a High pH Solution with Chelating Agent[J]. Geofluids, 2009, 9(2): 167-177.

[19] Labus K,Bujok P.CO2 Mineral Sequestration Mechanisms and Capacity of Saline Aquifers of the Upper Silesian Coal Basin (Central Europe)-Modeling and Experimental Verification[J]. Energy, 2011, 36(8): 4974-4982.

[20] 沈照理, 朱宛华. 水文地球化学基础[M].北京:地质出版社,1993. Shen Zhaoli, Zhu Wanhua. Hydrogeochemical Basis[M]. Beijing: Geology Publishing House, 1993.

[21] 侯大力,罗平亚,王长权, 等.高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报:地球科学版,2015,45(2):564-572. Hou Dali,Luo Pingya,Wang Changquan, et al. Experimental Reseachandthe TheoreticalModelforCO2 Solubility in WaterUnderHighTemperatureand HighPressure[J]. Journal of Jilin University:Earth Science Edition, 2015,45(2):564-572.

[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[3] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[4] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[5] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[6] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[7] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[8] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74-83.
[9] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[10] 林承焰, 曹铮, 任丽华, 张昌盛, 范瑞峰, 王叶, 邢新亚, 马晓兰. 松辽盆地南部大情字井向斜区葡萄花油层石油富集规律及成藏模式[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1598-1610.
[11] 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[12] 刘财, 杨宝俊, 冯晅, 单玄龙, 田有, 刘洋, 鹿琪, 刘才华, 杨冬, 王世煜. 论油气资源的多元勘探[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1208-1220.
[13] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[14] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[15] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!