吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 279-285.doi: 10.13278/j.cnki.jjuese.201601305

• 地球探测与信息技术 • 上一篇    下一篇

基于粒度控制的复杂储层渗透性建模方法

赵军1, 代新雲1, 古莉1, 祁新忠2, 陈伟中2   

  1. 1. 西南石油大学地球科学与技术学院, 成都 610500;
    2. 中国石油塔里木油田公司研究院, 新疆库尔勒 841000
  • 收稿日期:2015-04-01 出版日期:2016-01-26 发布日期:2016-01-26
  • 作者简介:赵军(1970),男,教授,博士,主要从事油气测井、地质研究工作,E-mail:zhaojun_70@126.com
  • 基金资助:

    国家"十二五"重大专项(2011ZX05013-006-008)

Method of Permeability Model Establishment Based on the Complex Reservoir Controlled by Particle-Size

Zhao Jun1, Dai Xinyun1, Gu Li1, Qi Xinzhong2, Chen Weizhong2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Tarim Oilfield Company, CNPC, Kuerle 841000, Xinjiang, China
  • Received:2015-04-01 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by Special National Five-Year Plan(2011ZX05013-006-008)

摘要:

岩石颗粒大小反映了沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时也是影响沉积物渗透性的主要因素。沉积环境在纵向上表现出来的差异性,使得粒序控制下的地层渗透性在纵向上也表现出非均质性。为了精细地描述由于粒度大小造成的渗透率的非均质性,本文首先结合岩心粒度分析资料,分析了研究区粒度大小对物性影响的规律,利用自然伽马、中子、密度、声波曲线,通过测井地质分析提取敏感参数,建立了粒度计算模型;然后以粒度为指标,建立了不同粒度大小条件下的渗透率计算模型。通过现场资料的处理及其与岩心资料的对比,认为这种渗透率建模方法能够较好地反映沉积物粒度对岩石渗透性的控制作用,能够更加精确地描述复杂岩性地层渗透率的非均质性特征,从而可为地质开发研究提供更为准确的渗透率剖面。

关键词: 测井, 复杂储层, 渗透率, 粒度, 非均质性

Abstract:

Particle-size is one of the main feature of sedimentary rock structures, the main indicators to evaluate the rock lithology, and also the main controlling factors on the sediment's permeability. As the sedimentary environment manifests differences in vertical, the permeability controlled by particle-size also shows heterogeneity in vertical. In order to describe the heterogeneity of the permeability caused by particle-size precisely, the authors utilize GR, CNL, DEN, and DT curves, combine with the particle-size analysis data of cores, abstract several parameters which are sensitive to particle-size, and set up a model to calculate the particle-size. Then, the permeability model under the conditions of different particle sizes is established. Through field data processing and contrast of core data, this model has been proved to be feasible in reflecting the control mechanism of sediment particle-size to the permeability, and in describing the heterogeneity of the permeability in reservoirs with complex lithology more precisely. A more accurate permeability profile is thereby provided for geological research and development.

Key words: well logging, complex reservoir, permeability, particle-size, heterogeneity

中图分类号: 

  • P631.8

[1] 陈恭洋,周艳丽,胡勇.碎屑岩储层岩石物理特征及岩性解释方法[J].西南石油大学学报(自然科学版),2011, 33(2):21-27. Chen Gongyang, Zhou Yanli, Hu Yong. The Ptrophysics Caracterization of Castic Reservoir and the Mthods of Lthology[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(2):21-27.

[2] 于学峰,周卫健,刘晓清,等. 青藏高原东部全新世泥炭灰分的粒度特征及其古气候意义[J]. 沉积学报,2006,24(6):864-869. Yu Xuefeng, Zhou Weijian, Liu Xiaoqing, et al. Grain Size Characteristics of the Holocene Peat Sediment in Eastern Tibetan Plateau and Its Paleoclimatic Significance[J]. Acta Sedimentologica Sinica, 2006, 24(6):864-869.

[3] 李长安,张玉芬,袁胜元,等."巫山黄土"粒度特征及其对成因的指示[J].地球科学:中国地质大学学报,2010,35(5):879-884. Li Chang'an, Zhang Yufen, Yuan Shengyuan, et al. Grain Size Characteristics and Origin of the "Wushan Loess" at Wushan Area[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(5):879-884.

[4] 罗利,朱心方,常俊,等.苏5、桃7区块不同粒度碎屑岩测井识别方法[J].天然气工业,2007, 27(12):36-38. Luo Li, Zhu Xinfang, Chang Jun, et al. Logging Recognition Methods for Clastic Rocks with Different Granularities in Blocks SU-5 and TAO-7[J]. Natural Gas Industry, 2007, 27(12):36-38.

[5] 张晓岗,胡晓辉,王艳青,等.岩石特性测量技术在测井综合解释中的应用[J].中国测试技术,2008, 34(5):113-115. Zhang Xiaogang, Hu Xiaohui, Wang Yanqing, et al. Application of Rock Characteristic Measurement Technologies on Logging Comprehensive Interpretation[J]. China Measurement & Testing Technology, 2008, 34(5):113-115.

[6] 韩承霖,张云峰.大安油田扶余油层致密砂岩储层物性特征及影响因素分析[J].吉林大学学报(地球科学版),2015, 45(增刊1):1515. Han Chenglin, Zhang Yunfeng. Da'an Oilfield in Fuyu Oil Layer Dense Sandstone Reservoir Physical Characteristics and Influence Factors Analysis[J]. Journal of Jinlin University (Earth Science Edition), 2015, 45(Sup.1):1515.

[7] 马奔奔,操应长,王艳忠,等.东营凹陷盐家地区沙四上亚段砂砾岩储层岩相与物性关系[J].吉林大学学报(地球科学版),2015,45(2):495-506. Ma Benben, Cao Yingchang, Wang Yanzhong, et al. Relationship Between Lithofacies and Physical Properties of Sandy Conglomerate Reservoirs of Es4s in Yanjia Area, Dongying Depression[J]. Journal of Jinlin University (Earth Science Edition), 2015, 45(2):495-506.

[8] 杨懿,姜在兴,张晓莉,等.大牛地气田盒3段致密储层控制因素及测井岩相研究[J].西北大学学报(自然科学版),2010,40(4):699-707. Yang Yi, Jiang Zaixing, Zhang Xiaoli, et al. Factors Controlling and Lithofacies Interpretation for Compacted Reservoirs in H3 Member of Daniudi Gas Field[J]. Journal of Northwest University (Natural Science Edition), 2010, 40(4):699-707.

[9] 高浩锋,张金功,罗文琴,等.砂岩、泥质岩和煤岩渗透率的研究[J].石油化工应用,2011,30(4):4-7. Gao Haofeng, Zhang Jingong, Luo Wenqin, et al. The Permeability Research of Sandstone, Argillaceous Rocks and Coal Rock[J]. Petrochemical Industry Application, 2011, 30(4):4-7.

[10] 杨建,陈家军,杨周喜,等.松散砂粒孔隙结构、孔隙分形特征及渗透率研究[J].水文地质工程地质,2008(3):93-98. Yang Jian, Chen Jiajun, Yang Zhouxi, et al. A Study of Pore Structure, Pore Fractal Feature and Permeability of Unconsolidated Sand[J]. Hydrogeology & Engineering Geology, 2008(3):93-98.

[11] 范宜仁,葛新民,汪海龙,等.非均质性砂砾岩储层渗透率预测方法研究[J].西南石油大学学报(自然科学版),2010,32(3):6-10. Fan Yiren, Ge Xinmin, Wang Hailong, et al. Study on the Method Predicting Permeability in the Heterogeneous Glutenite Reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(3):6-10.

[12] 孙建孟,闫国亮.渗透率模型研究进展[J].测井技术,2012,36(4):329-335. Sun Jianmeng, Yan Guoliang. Review on Absolute Permeability Model[J]. Well Logging Technology, 2012, 36(4):329-335.

[13] 高磊.基于岩石物理相的酸性火山岩储层渗透率计算方法[J].石油仪器,2013(10):60-63. Gao Lei. The Method of Permeability Calculation of Acidic Volcanic Rocks Based on Petrophysical Phase[J]. Petroleum Instruments, 2013(10):60-63.

[14] 高华,吴洪深,张海荣.莺歌海盆地低孔渗储层测井相分类及渗透率评价方法研究[J].石油天然气学报,2013,35(7):87-92. Gao Hua, Wu Hongshen, Zhang Hairong. Yinggehai Basin Permeability of Low Permeability Reservoir Logging Facies Classification and Evaluation Method Study[J]. Journal of Oil and Gas Technology, 2013, 35(7):87-92.

[15] 邵维志,解经宇,迟秀荣,等.低孔隙度低渗透率岩石孔隙度与渗透率关系研究[J].测井技术,2013, 37(2):149-154. Shao Weizhi, Xie Jingyu, Chi Xiurong, et al. On the Relation of Porosity and Permeability in Low Porosity and Low Permeability Rock[J]. Well Logging Technology, 2013, 37(2):149-154.

[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[3] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[4] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[5] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[6] 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906.
[7] 康学远, 施小清, 史良胜, 吴吉春. 基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 848-859.
[8] 葛利华, 姜弢, 徐学纯, 贾海青, 杨志超. 辽西葫芦岛东部表层调查方法比对实验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 616-625.
[9] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[10] 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883.
[11] 刘立, 白杭改, 刘娜, 明晓冉, 蒋令旭. 洪水型季节性河流砂岩中碎屑黏土的岩石学特征及其研究意义[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1071-1079.
[12] 刘仁强, 段永刚, 谭锋奇, 刘红现, 屈怀林. 用试井资料研究低渗透裂缝性油藏渗流模式及演化特征——以准噶尔盆地火烧山油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 610-616.
[13] 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294.
[14] 祝鹏, 林承焰, 李智强, 赵文积, 张华莲. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1862-1869.
[15] 何辉, 孔垂显, 蒋庆平, 邓西里, 肖芳伟, 李顺明. 准噶尔盆地西北缘二叠系火山岩储层裂缝发育特征及分布预测—以金龙2井区佳木河组为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1278-1288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!