吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1127-1138.doi: 10.13278/j.cnki.jjuese.20180331

• 地质工程与环境工程 • 上一篇    

钙质砂水理性质及对岛礁淡水透镜体形成的影响

盛冲1,2, 许鹤华1,3,4, 张云帆1,3,4, 张文涛1,2, 任自强1,2   

  1. 1. 中国科学院边缘海与大洋地质重点实验室(中国科学院南海海洋研究所), 广州 510301;
    2. 中国科学院大学, 北京 100049;
    3. 南方海洋科学与工程广东省实验室, 广州 511458;
    4. 中国科学院南海生态环境工程创新研究院, 广州 510301
  • 收稿日期:2018-12-12 发布日期:2020-07-29
  • 通讯作者: 许鹤华(1965-),男,副研究员,主要从事计算流体力学及相关模拟方面的研究,E-mail:xhhcn@scsio.ac.cn E-mail:xhhcn@scsio.ac.cn
  • 作者简介:盛冲(1994-),男,硕士研究生,主要从事水文地质及地下水数值模拟方面的研究,E-mail:shengchong17@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(91428205,41376061);中国科学院战略性先导科技专项(A类)(XDA13010303);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104)

Hydrological Properties of Calcareous Sands and Its Influence on Formation of Underground Freshwater Lenson Islands

Sheng Chong1,2, Xu Hehua1,3,4, Zhang Yunfan1,3,4, Zhang Wentao1,2, Ren Ziqiang1,2   

  1. 1. Key Laboratory of Ocean and Marginal Sea Geology(South China Sea Institute of Oceanology), Chinese Academy of Sciences, Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
    4. Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2018-12-12 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (91428205, 41376061),Strategic Priority Research Program of Chinese Academy of Sciences (XDA13010303) and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0104)

摘要: 钙质砂的水理性质对岛礁地下淡水透镜体的形成至关重要。通过室内试验的方法从透水性、容水性和给水性3个方面对南海钙质砂的水理性质进行了研究,并在此基础上进一步结合数值模拟手段,探讨了上述相关性质对岛礁淡水透镜体形成的影响。结果表明:南海钙质砂多具有级配不良且不均匀的特征;其渗透系数通常在0.023~110 m/d之间,区域间差异较大,而孔隙度和给水度则主要集中在0.40~0.55和0.012~0.310之间,与同粒径范围的陆源砂相比,呈现出容水性好但给水性偏低的特征。钙质砂的水理性质对岛礁地下淡水透镜体形成的影响主要体现在流速、厚度、资源储量以及形成时间等方面,其中钙质砂的透水性越好,地下水中的流速越快,咸淡水间的混合作用越强,导致淡水透镜体的厚度越薄,储量越少;给水性则主要影响钙质砂中淡水透镜体的资源储量,对淡水透镜体的厚度及形状影响较小。

关键词: 南海, 钙质砂, 水理性质, 淡水透镜体, 数值模拟

Abstract: The hydrological properties of calcareous sand in South China Sea are very important for the study of the formation of underground freshwater lens on islands. The permeability, specific water capacity,and specific yield of calcareous sands were studied by laboratory test first; and combined with the two-dimensional numerical model, their influence on the formation of freshwater lens of islands was analyzed. The result shows that the calcareous sand in South China Sea is poorly gradated and unevenly distributed, and the permeability coefficient is usually between 0.023 and 110 m/d, greatly changed in the study area. The porosity and specific yield are mainly between 0.40-0.55 and 0.012-0.310, respectively, which reflects that the calcareous sand has the characteristics of good water capacity but poor water supply compared with the continental sand with the same particle size range. The influence of hydrological properties of calcareous sand on the formation of freshwater lens is mainly reflected in the velocity, thickness, resource reserve,and formation time. Among them, the better the permeability of calcareous sand is, the faster the groundwater flow rate is, which strengthens the mixing effect between brackish and fresh water, resulting in a thinner freshwater lens and less reserves. Specific yield mainly affects the resources and reserves of freshwater lens in calcareous sand, but has little influence on the thickness and shape of freshwater lens.

Key words: South China Sea, calcareous sands, hydrological properties, freshwater lens, numerical simulation

中图分类号: 

  • P641
[1] 赵焕庭, 王丽荣. 南海诸岛珊瑚礁人工岛建造研究[J]. 热带地理, 2017, 37(5):681-693. Zhao Huanting, Wang Lirong. Construction of Artificial Island on Coral Reef in the South China Sea Island[J]. Tropical Geography, 2017, 37(5):681-693.
[2] 张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性的试验研究[J]. 岩土力学与工程学报, 2005, 24(18):3327-3331. Zhang Jiaming, Wang Ren, Shi Xiangfeng, et al. Compression and Crushing Behavior or Calcareous Sand Under Confined Compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18):3327-3331.
[3] 汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京:科学出版社, 1997. Wang Ren, Song Chaojing, Zhao Huanting, et al. Nansha Islands Coral Reef Engineering Geology[M]. Beijing:Science Press, 1997.
[4] 胡明鉴, 蒋航海, 朱长歧, 等. 钙质砂的渗透特性及其影响因素探讨[J]. 岩土力学, 2017, 38(10):2895-2900. Hu Minjian, Jiang Hanghai, Zhu Changqi, et al.Discussion on Permeability of Calcareous Sand and Its Influencing Factors[J]. Rock and Soil Mechanics, 2017, 38(10):2895-2900.
[5] 任玉宾. 南海钙质砂渗透特性试验研究[D]. 大连:大连理工大学, 2016. Ren Yubin. Experimental Study on the Permeability Characteristics of Calcareous Sand in South China Sea[D]. Dalian:Dalian University of Technology, 2016.
[6] 朱长岐, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7):1831-1836. Zhu Changqi, Chen Haiyang, Meng Qingshan, et al.Microscopic Characterization of Intra-Pore Structures of Calcareous Sands[J]. Rock and Soil Mechanics, 2014,35(7):1831-1836.
[7] 钱琨, 王新志, 陈剑文, 等. 南海岛礁吹填钙质砂渗透特性试验研究[J]. 岩土力学, 2017, 38(6):1557-1564,1572. Qian Kun, Wang Xinzhi, Chen Jianwen, et al. Experimental Study on Permeability of Calcareous Sand for Islands in the South China Sea[J]. Rock and Soil Mechanics, 2017, 38(6):1557-1564, 1572.
[8] 甄黎, 周从直, 束龙仓, 等. 海岛淡水透镜体演变规律的室内模拟实验[J]. 吉林大学学报(地球科学版), 2008, 38(1):81-85. Zhen Li, Zhou Congzhi, Shu Longcang, et al. Laboratory Simulation Experiment of Evolution of Island Freshwater Lens[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(1):81-85.
[9] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J].吉林大学学报(地球科学版), 2016, 46(1):195-201. Zhao Lin, Mo Huiting, Zheng Yi. Maintenance Mechanism of Freshwater Lens in Vadose Zone on Coastal Saline Areas[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):195-201.
[10] 周从直, 方振东, 魏营, 等. 珊瑚岛礁淡水透镜体开发利用[M]. 重庆:重庆大学出版社, 2017. Zhou Congzhi, Fang Zhendong, Wei Ying, et al. Exploitation and Utilization of Freshwater Lens on Coral Reef Islands[M]. Chongqing:Chongqing University Press, 2017.
[11] 土工试验规程:SL 237-1999[S]. 北京:中国水利水电出版社, 1999. Specification of Soils Test:SL 237-1999[S]. Beijing:China Water & Power Press, 1999.
[12] 岩土工程勘察规范:GB 50021-2001[S]. 北京:中国建筑工业出版社, 2009. Code for Investigation of Geotechnical Engineering:GB 50021-2001[S]. Beijing:China Architecture & Building Press, 2009.
[13] 王大纯, 张人权, 史毅红, 等. 水文地质学基础[M]. 北京:地质出版社, 1995. Wang Dachun, Zhang Renquan, Shi Yihong, et al. General Hydrogeology[M]. Beijing:Geological Publishing House, 1995.
[14] 束龙仓, 周从直, 甄黎, 等. 珊瑚砂含水介质水理性质的实验室测定[J]. 河海大学学报(自然科学版), 2008, 36(3):330-332. Shu Longcang, Zhou Congzhi, Zhen Li, et al. Measurement of the Hydrological Properties of Coral Sand in a Laboratory[J]. Journal of Hohai University (Natural Sciences), 2008,36(3):330-332.
[15] 徐学勇. 饱和钙质砂爆炸响应动力特性研究[D]. 武汉:中国科学院武汉岩土力学研究所, 2009. Xu Xueyong. Study on Dynamic Behavior of Saturated Calcareous Soil Due to Explosion[D]. Wuhan:Institute of Rock & Soil Mechanics Chinese Academy of Science,2009.
[16] 李怀亮, 黄山田, 王晓飞, 等. 南海和阿拉伯湾钙质砂工程特性对比研究[J]. 海洋地质与第四纪地质, 2018, 38(2):72-78. Li Huailiang, Huang Shantian, Wang Xiaofei, et al. Comparison of Engineering Characteristics of Calcareous Sands in the South China Sea and Arabian Bay[J]. Marine Geology & Quaternary Geology, 2018,38(2):72-78.
[17] 赵焕庭, 王丽荣, 宋朝景. 南海珊瑚礁地貌模型研究[J]. 海洋学报, 2014, 36(9):112-120. Zhao Huanting, Wang Lirong, Song Chaojing. Geomorphological Model of Coral Reefs in the South China Sea[J]. Acta Oceanologica Sinica, 2014, 36(9):112-120.
[18] 束龙仓,王明昭,张惠潼,等.咸淡水界面位置确定的综合方法(TEcG)及其应用[J]. 吉林大学学报(地球科学版), 2019, 49(6):1706-1713. Shu Longcang, Wang Mingzhao, Zhang Huitong, et al. Comprehensive Method (TEcG) of Determination of the Location of Freshwater and Saltwater Interface and Its Application[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1706-1713.
[19] Schneider J C, Kruse S E. Assessing Selected Natural and Anthropogenic Impacts on Freshwater Lens Morphology on Small Barrier Islands:Dog Island and St George Island, Florida, USA[J]. Hydrogeology Journal, 2005, 14(1/2):131-145.
[20] Adrian D W, Hannah K S, Sandra C G, et al. Hydrogeology and Management of Freshwater Lenses on Atoll Islands:Review of Current Knowledge and Research Needs[J]. Journal of Hydrology, 2017, 551:819-844.
[21] Neuman S P. Universal Scaling of Hydraulic Conductivities and Dispersivities in Geologic Media[J]. Water Resources Research, 1990, 26:1749-1758.
[22] Gelhar L W, Welty C, Rehfeldt K W. A Critical Review of Data on Field-Scale Dispersion in Aquifers[J]. Water Resources Research, 1992, 28:1955-1974.
[23] 邓永锋, 刘松玉, 章定文, 等.几种孔隙比与渗透系数关系的对比[J]. 西北地震学报, 2011, 33(增刊1):64-66. Deng Yongfeng, Liu Songyu, Zhang Dingwen, et al. Comparison Among Some Relationships Between Permeability and Void Ratio[J]. Northwestern Seismological Journal,2011, 33(Sup.1):64-66.
[24] 盛冲, 许鹤华, 张文涛. 地貌变化对永兴岛淡水透镜体影响的数值模拟[J]. 水文地质工程地质, 2018, 45(6):7-14. Sheng Chong, Xu Hehua, Zhang Wentao. Numerical Simulation of the Effect of Geomorphologic Changes on Freshwater Lens in Yongxing Island[J]. Hydrogeology & Engineering Geology, 2018,45(6):7-14.
[25] Schneider, J C, Kruse S E. A Comparison of Controls on Freshwater Lens Morphology of Small Carbonate and Siliciclastic Islands:Examples from Barrier Islands in Florida, USA[J]. Journal of Hydrology, 2003, 284(1/2/3/4):253-269.
[26] Stoeckl L, Houben G J, Dose E J. Experiments and Modeling of Flow Processes in Freshwater Lenses in Layered Island Aquifers:Analysis of Age Stratification, Travel Times and Interface Propagation[J]. Journal of Hydrology, 2015, 529:159-168.
[1] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[2] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[3] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[4] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[5] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[6] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[7] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[8] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[9] 殷征欣, 王海峰, 韩金生, 吕修亚, 沈泽中, 陈静, 贺惠忠, 谢安远, 关瑶, 董超. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报(地球科学版), 2019, 49(1): 261-277.
[10] 卢丽娟, 蔡周荣, 黄强太, 姚永坚, 刘海龄. 南海及邻区新构造运动表现特征及其主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 206-217.
[11] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[12] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[13] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[14] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[15] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!