吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1740-1752.doi: 10.13278/j.cnki.jjuese.20210027

• 地质与资源 • 上一篇    下一篇

攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义

张贵山1,2, 邱红信1, 温汉捷1,3, 彭仁1, 孟乾坤1   

  1. 1. 长安大学地球科学与资源学院, 西安 710065;
    2. 自然资源部岩浆作用成矿与找矿重点实验室, 西安 710065;
    3. 中国科学院地球化学研究所矿床地球化学国家重点实验室, 贵阳 550081
  • 收稿日期:2021-01-24 出版日期:2021-11-26 发布日期:2021-11-24
  • 通讯作者: 温汉捷(1971-),男,研究员,博士,主要从事矿床地球化学方面的研究,E-mail:wenhanjie@vip.gyig.an.cn E-mail:wenhanjie@vip.gyig.an.cn
  • 作者简介:张贵山(1971-),男,副教授,博士,主要从事矿床地球化学方面的研究,E-mail:zygszh@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(41073027);中央高校基本科研业务费专项资金(310827172003);陕西省自然科学基金项目(2019JM-161);财通矿山新兴关键矿产资源综合研究项目(030216190040)

Geochemical Characteristics and Geological Significance of Cobalt in Cobalt-Rich Sulfide of Hongge V-Ti Magnetite Ore Field, Panxi

Zhang Guishan1,2, Qiu Hongxin1, Wen Hanjie1,3, Peng Ren1, Meng Qiankun1   

  1. 1. School of Earth Science and Resources, Chang'an University, Xi'an 710065, China;
    2. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, Ministry of Natural Resources, Xi'an 710065, China;
    3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Received:2021-01-24 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41073027),the Projects of Foundatental Research Funds of the Central Universities (310827172003), the Natural Science Foundation of Shaanxi Province,China (2019-JM-161) and the Comprehensive Research Project on Emerging Key Mineral Resources of Caitong Mine (030216190040)

摘要: 攀西红格钒钛磁铁矿矿田白草矿区发育富钴硫化物矿物,关于其成因和形成环境方面的研究较为薄弱。本文采用矿物学、矿物化学、地球化学等方法对其进行系统研究。矿石中主要富钴硫化物为磁黄铁矿(Po)、黄铁矿(Py)、镍黄铁矿(Pn)、硫钴镍矿(Se)。磁黄铁矿Co、Ni平均质量分数分别为0.21%、0.42%,Co/Ni平均值为1.10;黄铁矿Co、Ni平均质量分数分别为0.18%、0.29%,Co/Ni平均值为0.77;镍黄铁矿Co、Ni平均质量分数分别为2.67%、34.30%,Ni/Fe平均值为1.08、S/Fe平均值为1.91、M/S#平均值为1.13;硫钴镍矿Co、Ni平均质量分数分别为24.30%、22.90%,Co/Ni平均值为1.06。根据Po-Py矿物温度计,白草矿区富钴硫化物结晶温度在267~490℃之间,表明其形成于中高温的条件。通过与地幔包体镍黄铁矿S/Fe、M/S#特征值的对比,结合磁黄铁矿具有陨硫铁(Tr)同质多象晶体的特征,认为白草矿区硫化物具有地幔源的特征,说明成矿物质来源于地幔。白草矿区钴地球化学特征研究表明,在硫化物熔体分离过程中,钴迁移至单硫化物固溶体形成Po-Py固溶体,再由Po-Py固溶体中迁移至Pn、Se,形成了Se、Pn、Po-Py、Ccp(黄铜矿)中Co质量分数依次递减的现象。

关键词: 富钴硫化物, 钴, 电子探针, 地球化学, 白草矿区, 红格钒钛磁铁矿矿田

Abstract: Cobalt rich sulfide minerals are developed in Baicao mining area of Hongge ore field in Panxi. The research on their genesis and formation environment is relatively weak. In this paper, the mineralogy and mineral chemistry are used for a systematic study. The results show that the main cobalt-rich sulfides in the ore are pyrrhotite, pyrite, pentlandite, and siegenite. The average contents of Co and Ni in pyrrhotite are 0.21% and 0.42% respectively, and the average value of Co/Ni is 1.10; The average contents of Co and Ni in pyrite are 0.18% and 0.29% respectively, and the average value of Co/Ni is 0.77; The average contents of Co and Ni in pentlandite are 2.67% and 34.30% respectively, and the average value of Ni/Fe,S/Fe and M/S# are 1.08,1.91 and 1.13 respectively; The average contents of Co and Ni in siegenite are 24.30% and 22.90% respectively, and the average value of Co/Ni is 1.06. According to the pyrrhotite-pyrite mineral thermometer, the crystallization temperature of the Baicao cobalt rich sulfide is about 267-490℃, which indicates that it was formed at medium high temperature. Compared with the characteristic values of S/Fe and M/S# of the mantle xenolith pentlandite, the pyrrhotite has the characteristics of troilite (Tr) homomorphic polycrystal, which reflects that the ore-forming materials were derived from the mantle. The geochemical characteristics of cobalt in Baicao mining area show that in the process of sulfide melt separation, cobalt migrated to mono-sulfide solid solution to form Po-Py solid solution, and then migrated further to form Pn and Se solid solution, forming the phenomenon that the content of Co in Se, Pn, Po-Py and Ccp decreases gradually.

Key words: cobalt-rich sulfide, cobalt, EPMA, geochemistry, Baicao mining area, Hongge V-Ti magnetite ore field

中图分类号: 

  • P571
[1] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京:科学出版社, 1984:101-112. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Geochemistry of Eelement[M]. Beijing:Science Press, 1984:101-112.
[2] 宋谢炎, 陈列锰, 于宋月, 等. 峨眉大火成岩省钒钛磁铁矿矿床地质特征及成因[J]. 矿物岩石地球化学通报, 2018, 37(6):1003-1018. Song Xieyan, Chen Liemeng, Yu Songyue, et al. Geological Features and Genesis of the V-Ti Magenetite Deposits in the Emeishan Large Igneous Province, SW China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6):1003-1018.
[3] Wang D C, Hou T, Wang M, et al. New Constraints on the Open Magma Chamber Processes in the Formation of Giant Hongge Fe-Ti-V Oxide Deposit[J]. Lithos, 2020. doi:10.1016/j.lithos.2020.105704.
[4] Lu Y G, Lesher C M, Deng J. Geochemistry and Genesis of Magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) Deposits in China[J]. Ore Geology Reviews, 2019, 107:863-887.
[5] Liang Q L, Song X Y, Wirth R, et al. Implications of Nano-and Micrometer-Size Platinum-Group Element Minerals in Base Metal Sulfides of the Yangliuping Ni-Cu-PGE Sulfide Deposit, SW China[J]. Chemical Geology, 2019, 517:7-21.
[6] Ding X, Ripley E M, Wang W Z, et al. Iron Isotope Fractionation During Sulfide Liquid Segregation and Crystallization at the Lengshuiqing Ni-Cu Magmatic Sulfide Deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261:327-341.
[7] Tang Q Y, Li C, Ripley E M, et al. Sr-Nd-Hf-O Isotope Constraints on Crustal Contamination and Mantle Source Variation of Three Fe-Ti-V Oxide Ore Deposits in the Emeishan Large Igneous Province[J]. Geochimica et Cosmochimica Acta, 2021, 292:364-381.
[8] Xiong Y Q, Shao Y Q, Jiang S Y, et al. Distal Relationship of the Taihexian Pb-Zn-(Au) Deposit to the Dengfuxian Magmatic-Hydrothermal System, South China:Constraints from Mineralogy, Fluid Inclusion, H-O-Pb and in Situ S Isotopes[J]. Ore Geology Reviews, 2020, 127:103826.
[9] Wang K, Dong H, Liu R. Genesis of Giant Fe-Ti Oxide Deposits in the Panxi Region, SW China:A Review[J]. Geological Journal, 2019.doi:10.1002/gj.3632.
[10] Wang Y J, Zhu W G, Zhong H, et al. Using Trace Elements of Magnetite to Constrain the Origin of the Pingchuan Hydrothermal Low-Ti Magnetite Deposit in the Panxi Area, SW China[J]. Acta Geochimica, 2019, 38:376-390.
[11] Liu P P, Zhou M F, Wei T C, et al. In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-Bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(4):853-871.
[12] Wei C, Ye L, Hu Y S, et al. LA-ICP-MS Analyses of Trace Elements in Base Metal Sulfides from Carbonate-Hosted Zn-Pb Deposits, South China:A Case Study of the Maoping Deposit[J]. Ore Geology Reviews, 2021, 130(2):103945.
[13] Zhang Z Z, Qin J F, Lai S C, et al. Origin of Late Permian Syenite and Gabbro from the Panxi Rift, SW China:The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume[J]. Lithos, 2019, 346/347:105160.
[14] 曹永华. 攀枝花层状岩体岩浆演化及钒钛磁铁矿矿床的成因研究[D]. 广州:中国科学院广州地球化学研究所, 2019:1-26. Cao Yonghua. Magmatic Processes of the Panzhihua Layered Intrusion and Associated Fe-Ti-(V) Oxide Ore Deposit[D]. Guangzhou:Guangzhou Institute of Geochemistry Chinese Academy of Sciences, 2019:1-26.
[15] Desborough G A, Carpenter R H. Phase Relations of Pyrrhotite[J]. Economic Geology, 1965, 60(7):1431-1450.
[16] Mansur E T, Barnes S J, Duran C J. An Overview of Chalcophile Element Contents of Pyrrhotite, Pentlandite, Chalcopyrite, and Pyrite from Magmatic Ni-Cu-PGE Sulfide Deposits[J]. Mineralium Deposita, 2020,56:179-204.
[17] 张斌, 张革利, 陈浩,等. 陕西凤县二里河铅锌矿床金属硫化物标型特征及地质意义[J]. 世界地质, 2021, 40(2):265-272. Zhang Bin, Zhang Geli, Chen Hao, et al. Typomorphic Characteristics and Geological Signifit Cance of Metal Sulfide from Erlihe Pb-Zn Deposit in Fengxian County, Shaanxi Province[J]. Global Geology, 2021, 40(2):265-272.
[18] 杨阳, 唐菊兴, 吴纯能, 等. 西藏甲玛铜多金属矿床磁黄铁矿标型矿物学特征及其地质意义[J]. 矿床地质, 2020, 39(2):337-350. Yang Yang, Tang Juxing, Wu Chunneng, et al. Typomorphic Mineralogical Characteristics of Pyrrhotite in Jiama Cu Polymetallic Deposit, Tibet, and Its Geological Significance[J].Mineral Deposits, 2020, 39(2):337-350.
[19] 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4):345-354. Chen Dianfen. Characteristics of Main Metallic Minerals in Some Copper-Nickel Sulfide Deposits of China[J]. Acta Petrologica et Mineralogica, 1995, 14(4):345-354.
[20] 吕林素, 李宏博, 周振华, 等. 吉林红旗岭富家矿床矿石矿物化学和硫同位素特征:对铜镍硫化物矿床成因及成矿过程的约束[J]. 地球学报, 2017, 38(2):193-207. Lü Linsu, Li Hongbo, Zhou Zhenhua, et al. Mineral Chemistry and Sulfur Isotopic Characteristics of Ores from the Fujia Deposit in Hongqiling Area, Jilin Province:Constraints on the Genesis and Ore-forming Processes of Ni-Cu Sulfide Deposit[J]. Acta Geoscientica Sinica, 2017, 38(2):193-207.
[21] Nekrasov I J, Besmen N I. Pyrite-Pyrrhotite Geothermometer. Distribution of Cobalt, Nickel and Tin[J]. Physics and Chemistry of the Earth, 1979, 11:767-771.
[22] 王玉往, 王京彬, 王莉娟,等. 岩浆铜镍矿与钒钛磁铁矿的过渡类型:新疆哈密香山西矿床[J]. 地质学报, 2006, 80(1):61-73. Wang Yuwang, Wang Jingbin, Wang Lijuan, et al. A Intermediate Type of Cu-Ni Sulfide and V-Ti Magnetite Deposit:Xiangshanxi Deposit,Hami, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):61-73.
[23] 徐国风, 邵洁涟. 黄铁矿的标型特征及其实际意义[J]. 地质论评, 1980, 26(6):541-546. Xü Guofeng, Shao Jielian. The Typomorphic Characteristics of Pyrite and Its Significance[J]. Geological Review, 1980, 26(6):541-546.
[24] 王汾连, 赵太平, 陈伟, 等. 峨眉山大火成岩省赋Nb-Ta-Zr矿化正长岩脉的形成时代和锆石Hf同位素组成[J]. 岩石学报, 2013, 29(10):3519-3532. Wang Fenlian, Zhao Taiping, Chen Wei, et al. Zircon U-Pb Ages and Lu-Hf Isotopic Compositions of the Nb-Ta-Zr-Bearing Syenitic Dikes in the Emeishan Large Igneous Province[J]. Acta Petrologica Sinica, 2013, 29(10):3519-3532.
[25] 范思文, 樊金虎, 孙立秋,等. 内蒙古特尼格尔图矽卡岩型铅锌矿床地质特征及矿床成因[J]. 世界地质, 2020, 39(4):826-837. Fan Siwen, Fan Jinhu, Sun Liqiu, et al. Geological Characteristics and Genesis of Tenige'ertu Lead-Zinc Deposit, Inner Mongolia[J]. Global Geology, 2020, 39(4):826-837.
[26] 骆华宝. 中国主要硫化铜镍及其成因研究[D]. 北京:中国地质科学院矿床研究所, 1990:43-65. Luo Huabao. The Major Nickel-Copper Sulfide Deposits and Their Genesis of China[D]. Beijing:Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1990:43-65.
[27] 顾连新, B. 康伯尔. 不同成因类型磁黄铁矿中镍、钴的地球化学[J]. 地质与勘探, 1974, 10(3):65-71. Gu Lianxin, Kangboer B. Co and Ni Geochemistry of Different Genetic Pyrrhotite[J]. Geology and Prospecting, 1974, 10(3):65-71.
[28] 黄式庭, 于晓飞, 吕志成, 等. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5):1387-1403. Huang Shiting, Yu Xiaofei, Lü Zhicheng, et al. Characteristics of Gold-Bearing Minerals and Compositions of In-Situ Sulfur of Laojinchang Gold Deposit in Beishan, Gansu Province and Its Ore-Forming Implications[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5):1387-1403.
[29] 李洪梁, 李光明, 丁俊,等. 藏南扎西康铅锌多金属矿床成因:硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5):1289-1303. Li Hongliang, Li Guangming, Ding Jun, et al. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet:Evidencefrom in Situ S Isotopes of Sulfides[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(5):1289-1303.
[30] 宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 38(4):699-710. Song Xieyan. Current Research Status and Important Issues of Magmatic Sulfide Deposits[J].Mineral Deposits, 2019, 38(4):699-710.
[31] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33):3825-3838. Wang Yan, Zhong Hong, Cao Yonghua, et al. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China:A Critical Review[J]. Chinese Science Bulletin, 2020, 65(33):3825-3838.
[32] 宋谢炎, 肖家飞, 朱丹, 等. 岩浆通道系统与岩浆硫化物成矿研究新进展[J]. 地学前缘, 2010, 17(1):153-163. Song Xieyan, Xiao Jiafei, Zhu Dan, et al. New Insights on the Formation of Magmatic Sulfide Deposits in Magma Conduit System[J]. Earth Science Frontiers, 2010, 17(1):153-163.
[33] 暴宏天, 王焰, 曹勇华. 新疆北山地区坡一岩体橄榄石成分特征及其对地幔源区的制约[J]. 地球化学, 2020, 49(4):353-367. Bao Hongtian, Wang Yan, Cao Yonghua. Compositions of the Olivine From the Poyi Ultramafic Intrusion in the Beishan Area, Xinjiang:Constraints on the Nature of Its Mantle Source[J]. Geochimica, 2020, 49(4):353-367.
[34] 张腾蛟, 李佑国, 张月姣, 等. 川西盐边县红格钒钛磁铁矿中镍钴硫化物的铂族元素地球化学特征[J]. 地质论评, 2017, 63(4):1050-1063. Zhang Tengjiao, Li Youguo, Zhang Yuejiao, et al. PGE Geochemical Characteristics of Massive Sulfide in V-Ti Magnetite at Hongge Area,Yanbian County, Western Sichuan[J]. Geological Review, 2017, 63(4):1050-1063.
[35] 张月姣. 四川红格钒钛磁铁矿矿床铂族元素地球化学研究[D]. 成都:成都理工大学, 2014:5-18. Zhang Yuejiao. The Platinum-Group Elements Geochemical Characteristecs of Vanadiumtitano-Magnetite Deposits in Hongge, Sichuan[D]. Chengdu:Chengdu University of Technology, 2014:5-18.
[36] Sarah A S, Barnes S J, Prichard H M. The Distribution of Platinum Group Elements(PGE) and Other Chalcophile Elements Among Sulfides from the Creighton Ni-Cu-PGE Sulfide Deposit, Sudbury, Canada, and the Origin of Palladium in Pentlandite[J]. Mineralium Deposita, 2010, 45:765-793.
[37] Barnes S J, Achterbergh E V, Makovicky E, et al. Proton Probe Results for Partitioning of Platinum Group Elements Between Monosulphide Solid Solution and Sulphide Liquid[J]. South African Journal of Geology, 2001, 104(4):275-286.
[38] Clifford P, Sarah J B, Edmond A M. Textural Variations in MORB Sulfide Droplets Due to Differences in Crystallization History[J]. Canadian Mineralogist, 2012, 50:675-692.
[1] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[2] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[3] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[4] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
[5] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
[6] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[7] 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097.
[8] 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138.
[9] 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.
[10] 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722.
[11] 张超, 石绍山, 时溢, 魏明辉, 杨帆, 郇恒飞, 李文博, 王路远. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 2021, 51(3): 734-748.
[12] 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766.
[13] 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782.
[14] 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886.
[15] 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .