吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2982-2993.doi: 10.13229/j.cnki.jdxbgxb.20211364

• 通信与控制工程 • 上一篇    下一篇

伪随机源直升机航空电磁宽频低噪接收优化设计

王言章1,2(),刘明1,2,张嘉霖1,2,朱凯光1,2,邓守鹏1,2,王世隆1,2()   

  1. 1.吉林大学 地球信息探测仪器教育部重点实验室,长春 130061
    2.吉林大学 仪器科学与电气工程学院,长春 130061
  • 收稿日期:2021-12-14 出版日期:2023-10-01 发布日期:2023-12-13
  • 通讯作者: 王世隆 E-mail:yanzhang@jlu.edu.cn;was1100@163.com
  • 作者简介:王言章(1979-),男,教授,博士.研究方向:精密原子磁传感技术及仪器,航空电磁探测仪器.E-mail:yanzhang@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFF01013303)

Optimization design of broadband and low noise receiving for helicopterborne electromagnetic method with pseudorandom coded waveforms

Yan-zhang WANG1,2(),Ming LIU1,2,Jia-lin ZHANG1,2,Kai-guang ZHU1,2,Shou-peng DENG1,2,Shi-long WANG1,2()   

  1. 1.Key Laboratory of Geo-exploration Instruments,Ministry of Education of China,Changchun 130061,China
    2.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130061,China
  • Received:2021-12-14 Online:2023-10-01 Published:2023-12-13
  • Contact: Shi-long WANG E-mail:yanzhang@jlu.edu.cn;was1100@163.com

摘要:

针对200 kHz高频码元伪随机发射源,综合考虑灵敏度、信噪比等因素,在噪声水平低至4.86 nT/s前提下,将空心线圈传感器谐振频率提升至150 kHz以上;接收机基于PXIe总线,可实现三分量电磁数据、发射电流及辅助信息收录,采样率最高可达1.25 MHz,动态范围为112.6 dB。通过复合时间戳整合多通道信号、改进的多信息单文件存储方式,实现了大数据量下的多信息可靠存储,与传统的CHTEM-Ⅱ航空电磁收录系统相比,吞吐量提升了8倍。多种性能指标测试结果证明本文接收系统具有较高的完成度。

关键词: 测试计量技术及仪器, 直升机航空电磁法, m序列, 宽频低噪空心线圈传感器, 高采样率接收机

Abstract:

In this paper, aiming at the pseudo-random transmitting current of 200 kHz clock frequency, comprehensively considering factors such as sensitivity, signal-to-noise ratio, the resonant frequency of the air-core coil sensor is increased to above 150 kHz when the noise level is as low as 4.86 nT/s; The receiver is based on the PXIe bus, which can realize the acquisition of three-component electromagnetic data, transmitting current and various auxiliary information. The sampling rate can reach up to 1.25 MHz, and the dynamic range is 112.6 dB. Through the integration of multi-channel signals, improved multi-information single-file storage method and data storage protocols through composite time stamping, reliable multi-information storage under massive data is realized. Compared with the CHTEM-Ⅱ airborne electromagnetic recording system, the throughput is up to 6 times. The test results of various performance indicators prove that the receiving system has a high degree of completion.

Key words: measuring and testing technologies and instruments, helicopter-borne electromagnetic method, m-sequence, broadband low-noise air-core coil sensor, high sampling rate receiver

中图分类号: 

  • TH763

图1

直升机航空电磁法原理"

图2

发射波形及其频谱"

图3

接收系统示意图"

图4

接收系统实物图"

图5

差分式空心线圈"

图6

空心线圈电气等效模型"

图7

空心线圈和m序列幅频特性"

图8

线圈灵敏度与直径和匝数的关系"

图9

线圈信噪比与直径和匝数的关系"

图10

线圈灵敏度与信噪比约束等高线图"

图11

空心线圈传感器噪声模型"

图12

传感器噪声曲线"

表1

空心线圈传感器参数"

参数符号参数值
线圈段数s4
总匝数n40
平均直径D515.5 mm
导线直径d1.5 mm
绕线电阻率ρr1.86×10-8?Ω?m
线槽宽度e6 mm
线圈内阻r2.135 Ω
线圈电感L1.24 mH
分布电容C850 pF
增益G641
放大器U1,U2,U3AD797B,AD797B,THS4131
电阻R1RgR3R5Rt1220 Ω,10 Ω,330 Ω,4.7 kΩ,1 kΩ

图13

接收机硬件框图"

表2

接收机设计指标"

指标
采样率1.25 MHz
分辨率24位
通道数6
量程±10 V
动态范围≥110 dB

图14

数据记录软件框图"

图15

数据流时序关系"

表3

数据传输环节带宽或写入速率"

环节带宽或写入速率备注
PXI总线132 MB/s并行
PXIe总线2.5 Gb/s串行每通道
内存2400 MT/sDDR4 2133 MHz
USB 3.05.0 Gb/s/
SATA 3.06 Gb/s/
外置硬盘盒520 MB/s主控芯片ASM
SATA机械硬盘100~150 MB/s5 400 r/min
SATA固态硬盘≥450 MB/sTLC

表4

机械硬盘下数据存储格式测试"

数据类型存盘间隔/s报错时已运行时间
DBL10:13:45
DBL20:44:38
I3213:33:22
I3223:37:31
I320.251:57:49
I320.52:21:34
U3222:06:15
U820:00:24

表5

固态硬盘存储实验"

品牌型号写入速度/(MB·s-1可靠工作时长/h
金士顿 UV500500>8
金士顿 A400S37450>8
云存 GDS25480>8
三星 870EVO530>8

图16

空心线圈传感器幅频特性"

图17

放大电路短路噪声测试"

图18

实测噪声与理论噪声对比"

图19

接收机测试"

表6

Agilent 33522B参数设置"

参数
码元频率99 949 Hz
阶数7
边沿时间4.0 ns

图20

户外实验场景"

图21

频域相位剖面图"

1 Liu G. Effect of transmitter current waveform on airborne TEM response[J]. Exploration Geophysics, 1998, 29: 35-41
2 陈曙东, 林君, 张爽. 发射电流波形对瞬变电磁响应的影响[J]. 地球物理学报, 2012, 55(2): 709-716.
Chen Shu-dong, Lin Jun, Zhang Shuang. Effect of transmitter current waveform on TEM response[J], Chinese J Geophys,2012, 55(2): 709-716.
3 Ziolkowski A, Wright D, Mattsson J. Comparison of pseudo-random binary sequence and square-wave transient controlled-source electromagnetic data over the Peon gas discovery, Norway[J]. Geophysical Prospecting, 2011, 59(6): 1114-1131.
4 Ziolkowski A, Parr R, Wright D, et al. Multi-transient electromagnetic repeatability experiment over the North Sea Harding field[J]. Geophysical Prospecting, 2010, 58: 1159-1176.
5 Ziolkowski A, Hobbs B A, Wright D. Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007, 72(4): 197-209.
6 Sorensen K I, Auken E. New developments in high resolution airborne TEM instrumentation[J]. ASEG Extended Abstracts, 2003(2): 1-4.
7 Eadie T, Legault J M, Plastow G, et al. VTEM ET: an improved helicopter time-domain EM system for near surface applications[J]. ASEG Extended Abstracts, 2018(1): 1-5.
8 武欣, 薛国强, 方广有. 中国直升机航空瞬变电磁探测技术进展[J]. 地球物理学进展, 2019, 34(4): 1679-1686.
Wu Xin, Xue Guo-qiang, Fang Guang-you. Development of helicopter-borne transient electromagnetic in China[J]. Progress in Geophysics, 2019, 34(4): 1679-1686.
9 Wu Xin, Fang Guang-you, Xue Guo-qiang, et al. The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(4): 653-663.
10 王麒. 基于PC104架构的时间域航空电磁多信息流数据收录系统研制[D]. 长春: 吉林大学仪器科学与电气工程学院, 2021.
Wang Qi. Research on multi-stream data recording system of time domain airborne electromagnetic based on PC104 architecture[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2021
11 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7): 2566-2577.
Qi Yan-fu, Yin Chang-chun, Wang Ruo, et al. Multi-transient EM full-time forward modeling and inversion of m-sequence[J]. Chinese J Geophys, 2015, 58(7): 2566-2577.
12 景春阳. 伪随机源浅层航空电磁探测的时域辨识方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2021.
Jing Chun-yang. Research on time domain identification method for shallow airborne electromagnetic exploration using pseudo-random current[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2021
13 汤井田, 李飞, 罗维斌. 基于逆重复m序列的精细探测电法发送机设计[J]. 地球物理学进展, 2007, 22(3): 994-1000.
Tang Jing-tian, Li Fei, Luo Wei-bin. Electrical fine-exploration transmitter design based on invert-repeated m-sequence[J]. Progress in Geophysics, 2007, 22(3): 994-1000.
14 Jing Chun-yang, Zhu Kai-guang, Peng Cong, et al. Early time data processing in shallow AEM exploration[C]∥Proceedings of the 9th International Conference on Environmental and Engineering Geophysics, Princeton, USA, 2020: 837-842.
15 陈曙东. 瞬变电磁收录系统的研究[D]. 长春: 吉林大学电子学院, 2009.
Chen Shu-dong. Research of receiving system of transient electromagnetic[D]. Changchun: College of Electronics, Jilin University, 2009.
16 符磊. 感应式空心线圈传感器关键技术研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2013.
Fu Lei. Key technology research of inductive air-core coil sensor[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2013.
17 Chen C, Fei L, Jun L, et al. An optimized air-core coil sensor with a magnetic flux compensation structure suitable to the helicopter TEM system[J]. Sensors, 2016, 16(4): 508.
18 刘飞. 直升机时间域电磁探测系统动态噪声产生机理及抑制方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2019.
Liu Fei. Research on generation mechanism and suppression method of motion induced noise in helicopter time domain electromagnetic system[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2019
19 武欣, 薛国强, 底青云, 等. 伪随机编码源电磁响应的精细辨识[J]. 地球物理学报, 2015, 58(8): 2792-2802.
Wu Xin, Xue Guo-qiang, Di Qing-yun, et al. Accurate identification for the electromagnetic impulse response og the earth with pseudo random coded waveforms[J]. Chinese J Geophys, 2015, 58(8): 2792-2802.
20 王世隆, 林君, 王言章, 等. 直升机式航空时间域电磁法全波收录[J]. 吉林大学学报: 工学版, 2011, 41(3): 776-781.
Wang Shi-long, Lin Jun, Wang Yan-zhang, et al. Helicopter-borne TEM full-wave recording[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 776-781.
[1] 翁小辉,孙友宏,张书军,谢军,常志勇. 基于仿生鼻腔优化的油气检测方法与实验新技术[J]. 吉林大学学报(工学版), 2020, 50(1): 382-388.
[2] 周逢道, 王爽, 韩思雨, 徐飞, 连士博, 孙彩堂. 可控源电磁探测的改进型正交检测算法[J]. 吉林大学学报(工学版), 2016, 46(6): 2128-2136.
[3] 于生宝, 苏发, 郑建波, 朱占山. 基于LabVIEW的瞬变电磁接收系统设计[J]. 吉林大学学报(工学版), 2016, 46(5): 1725-1731.
[4] 周逢道, 丁凯来, 曾新森, 薛开昶, 孙彩堂. 基于阶梯波参考信号的改进型正交锁定放大[J]. 吉林大学学报(工学版), 2016, 46(3): 996-1003.
[5] 田宝凤, 王悦, 张健, 吴佩霖, 周媛媛. 核磁共振测深环境电磁噪声测试系统的设计及实现[J]. 吉林大学学报(工学版), 2015, 45(6): 2034-2042.
[6] 周逢道, 唐红忠, 郭新, 王金玉. 时间域电磁探测发射电流过冲产生原理及抑制[J]. 吉林大学学报(工学版), 2013, 43(04): 1023-1028.
[7] 周逢道, 王金玉, 唐红忠, 张赫, 周继瑜. 近地表电磁探测多频数字驱动信号产生技术[J]. 吉林大学学报(工学版), 2013, 43(03): 682-687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!