吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1028-1037.doi: 10.13229/j.cnki.jdxbgxb.20220670

• 交通运输工程·土木工程 • 上一篇    

基于改进Bouc-Wen模型的RC柱数值模拟方法

郭玉荣1,2(),潘建中1   

  1. 1.湖南大学 土木工程学院,长沙 410082
    2.湖南大学 建筑安全与节能教育部重点实验室,长沙 410082
  • 收稿日期:2022-05-31 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:郭玉荣(1970-),男,教授,博士. 研究方向:建筑结构抗震混合试验. E-mail: yurongguo@hnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51878259);国家自然科学基金国际合作项目(51161120360)

Numerical simulation method for reinforced concrete columns based on modified Bouc-Wen model

Yu-rong GUO1,2(),Jian-zhong PAN1   

  1. 1.College of Civil Engineering,Hunan University,Changsha 410082,China
    2.Key Laboratory of Building Safety and Energy Efficiency,Hunan University,Changsha 410082,China
  • Received:2022-05-31 Online:2024-04-01 Published:2024-05-17

摘要:

为模拟钢筋混凝土(RC)柱进入非线性状态后的力学性能,首先,提出了一种改进Bouc-Wen模型,从刚度退化、捏拢效应与非对称特性等方面对Bouc-Wen-Baber-Noori(BWBN)模型进行修正,并结合参数规一化处理与混沌粒子群算法建立模型参数识别方法。然后,实现了改进Bouc-Wen材料在OpenSees平台中的二次开发,并应用该材料定义RC柱塑性铰的弯矩-转角关系,完成基于集中塑性铰模型的RC柱数值建模。最后,根据钢筋混凝土柱的低周往复加载试验数据,分别通过直接识别水平恢复力-侧移曲线与集中塑性铰数值建模的方法描述RC柱的滞回特性。与试验结果对比表明:改进Bouc-Wen模型模拟精度较BWBN模型有明显提高;纤维模型的计算精度依赖设计信息的准确性,未能较好地模拟经历性能变化后RC柱的非线性响应;基于改进Bouc-Wen模型的数值建模方法能够更为准确地模拟经历震损后RC柱的刚度退化、捏拢效应与非对称特性。

关键词: RC柱, 集中塑性铰模型, Bouc-Wen模型, 参数识别

Abstract:

In order to simulate the mechanical properties of reinforced concrete(RC) columns within nonlinear state, In this paper, an modified Bouc-Wen model is proposed to improve the Bouc-Wen-Baber-Noori (BWBN) model from the aspects of stiffness degradation, pinching effect and asymmetric characteristics. In the meantime, an identification method of model parameters is established by combining parameter normalization processing and chaotic particle swarm optimization algorithm. Furthermore, secondary development for modified Bouc-Wen material is presented in OpenSees. Afterwards, the proposed material is applied to describe the moment-rotation relationship of plastic hinge of RC columns and numerical modeling of RC columns based on concentrated plastic hinge is completed. According to the low-cyclic loading test data of RC columns, the hysteretic characteristics of RC columns are described by directly identifying the horizontal force-displacement curve and numerical modeling based on lumped plastic hinge model. The results show that the accuracy of the modified Bouc-Wen model is significantly higher than that of BWBN model. The calculation accuracy of fiber model depends on the accuracy of components information, which fails to simulate the nonlinear response of RC columns after performance change. The numerical modeling method based on the modified Bouc-Wen model can rationally simulate the degradation, pinching effect and asymmetric characteristics of RC columns after earthquake damage.

Key words: RC column, lumped plastic hinge model, Bouc-Wen model, parameter identification

中图分类号: 

  • TU375.3

图1

等效屈服点的确定"

图2

刚度退化增量项变化"

图3

参数ξη 对滞回曲线的影响"

图4

捏拢参数控制效果"

图5

非对称参数控制效果"

表1

改进Bouc-Wen模型参数"

编号参数物理意义
形状控制1k规一化线性刚度
2α屈服后刚度比
3β加卸载滞回参数
4γ加卸载滞回参数
5n弹塑性过渡段参数
6v非对称参数
退化控制7δν强度退化速率
8δη刚度退化速率
9ξη刚度退化速率控制系数
捏拢控制10σ捏拢效应影响范围
11ρ捏拢处总滑移量
12u捏拢处刚度退化速率

图6

计算模型与位移分析"

图7

构件加载装置"

表2

钢筋混凝土柱构件参数"

编号边界形式L/mmB/mmH/mmN0 /kNfc /MPafyl /MPafyh /MPaρl /%ρt/%
C1悬臂式75020020025630.14814631.211.44
C2双曲率式3 6006006003 06935.14134161.641.13

图8

两种Bouc-Wen模型识别滞回曲线对比"

图9

两种Bouc-Wen模型识别骨架曲线对比"

表3

两种Bouc-Wen模型的误差对比"

构件RMSE/%累积耗能/(kN·m)
BWBN改进Bouc-Wen试验值BWBN识别/试验改进Bouc-Wen识别/试验
C121.9818.5820.6021.811.0620.490.99
C217.0910.381 050.36923.660.91974.010.96

表4

转动弹簧改进Bouc-Wen模型参数识别值"

参数C1C2
等效屈服点θy /rad0.005 40.019 9
My /(kN·m)27.94745.19
改进Bouc-Wen模型参数k1.3222.135
α0.3940.460
β-0.318-0.230
γ0.0250.002
n1.7661.504
v0.9230.987
δν0.0360.046
δη0.0230.054
ξη2.3134.043
σ11.9919.938
ρ0.5400.495

图10

弯矩-转角曲线参数识别与模型建立"

图11

有限元建模滞回曲线对比"

表5

有限元建模误差对比"

构件RMSE/%累积耗能/(kN·m)
纤维模型改进Bouc-Wen模型试验值纤维模型识别/试验改进Bouc-Wen模型识别/试验
C123.5819.8620.6022.931.1119.970.97
C253.3111.78507.67816.411.61497.940.98
1 Ma F, Ng C H, Ajavakom N. On system identification and response prediction of degrading structures[J]. Structural Control & Health Monitoring, 2010, 13(1):347-364.
2 Baber T T, Wen Y K. Random vibration hysteretic, degrading systems[J]. J Engrg Mech ASCE, 1981, 107(6):1069-1087.
3 Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(12):1489-1511.
4 Lignos D G. Sidesway collapse of deteriorating structural systems under seismic excitations[D]. Stanford: Department of Civil and Environmental Engineering, Stanford University, 2008.
5 Baber T T, Noori M N. Random vibration of degrading pinching systems[J]. ASCE Journal of Engineering Mechanics, 1985, 111(8):1010-1026.
6 Yu B, Ning C L, Li B.Hysteretic model for shear-critical reinforced concrete columns[J]. Journal of Structural Engineering, 2016, 142(9): No.04016056.
7 余波,李长晋,吴然立. 钢筋混凝土柱的非对称恢复力模型与参数识别[J]. 工程力学,2017,34(2):153-161.
Yu Bo, Li Chang⁃jin, Wu Ran⁃li. Asymmetric restoration force model and parameter identification of reinforced concrete columns[J]. Engineering Mechanics, 2017, 34(2):153-161.
8 郭玉荣,潘洪军. 一种适用于变轴力柱混合试验的改进BWBN模型及其参数识别[J]. 铁道科学与工程学报,2021,18(11):2988-2997.
Guo Yu⁃rong, Pan Hong⁃jun. An improved BWBN model and its parameter identification suitable for variable axial force column mixing test[J]. Journal of Railway Science and Engineering, 2021,18(11):2988-2997.
9 顾祥林,蔡茂,林峰. 地震作用下钢筋混凝土柱受力性能研究[J]. 工程力学,2010,27(11):160-165, 190.
Gu Xiang⁃lin, Cai Mao, Lin Feng. Study on behavior of RC columns subjected to earthquake[J]. Engineering Mechanics, 2010, 27(11): 160-165, 190.
10 王甲春,阎培渝. 海洋环境下钢筋混凝土中钢筋锈蚀的概率[J]. 吉林大学学报:工学版, 2014,44(2):352-357.
Wang Jia⁃chun, Yan Pei⁃yu. The probability of steel corrosion in reinforced concrete in marine environment[J].Journal of Jilin University (Engineering and Technology Edition ),2014,44(2):352-357.
11 李磊,罗光喜,王卓涵, 等. 震损钢筋混凝土柱剩余能力的数值模型[J]. 工程力学,2020,37(12):52-67.
Li Lei, Luo Guang⁃xi, Wang Zhuo⁃han, et al. Numerical model for residual seismic capacity of the seismic damaged reinforced concrete columns[J]. Engineering Mechanics, 2020,37(12):52-67.
12 Lee C S, Han S W. Computationally effective and accurate simulation of cyclic behaviour of old reinforced concrete columns[J]. Engineering Structures,2018,173: 892-907.
13 陆新征,叶列平,潘鹏,等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J]. 建筑结构,2012,42(11):23-26.
Lu Xin⁃zheng, Ye Lie⁃ping, Pan Peng, et al. Pseudo-static collapse test and numerical simulation of reinforced concrete frame structure Ⅱ: Key component test[J]. Building Structure, 2012, 42(11): 23-26.
14 Syk A, Chl B. Nondimensionalized Bouc-Wen model with structural degradation for Kalman filter–based real-time monitoring[J]. Engineering Structures, 2021, 244: No.112674.
15 Zareian F, Medina R A. A practical method for proper modeling of structural damping in inelastic plane structural systems[J]. Computers & Structures, 2010, 88, (1-2):45-53.
16 高鹰,谢胜利. 混沌粒子群优化算法[J]. 计算机科学,2004,31(8):13-15.
Gao Ying, Xie Sheng⁃li. Chaos particle swarm optimization algorithm[J]. Computer Science, 2004, 31(8): 13-15.
17 郭玉荣,姚思盈. 震损钢筋混凝土柱的残余抗震性能试验研究[J]. 湖南大学学报:自然科学版,2022,49(9):1-8.
Guo Yu⁃rong, Yao Si⁃ying. Experimental study on seismic behavior of damaged reinforced concrete columns[J]. Journal of Hunan University(Natural Science Edition), 2022, 49(9):1-8.
[1] 张云龙,张家源,钱雪松,张攀,杨润超. 环境激励下桥梁模态参数识别的频谱方法综述[J]. 吉林大学学报(工学版), 2023, 53(6): 1580-1591.
[2] 刘巧斌,史文库,陈志勇,骆联盟,苏志勇,黄开军. 混合可靠性模型参数的核密度和引力搜索估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1818-1825.
[3] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[4] 杨越东, 陈吉清, 兰凤崇, 周云郊. 基于焊点参数识别的白车身动态特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1379-1386.
[5] 程永春, 郭庆林, 谭国金. 沥青混合料黏弹性参数的改进识别 [J]. , 2012, (03): 629-633.
[6] 姜浩, 郭学东. 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
[7] 王丽娅,孟广伟,陈介中. 激励下的线性结构系统局部刚度参数识别[J]. 吉林大学学报(工学版), 2006, 36(01): 1-0004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!