吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1016-1027.doi: 10.13229/j.cnki.jdxbgxb.20221081

• 交通运输工程·土木工程 • 上一篇    

台后设置拱形结构的无缝桥梁整体受力性能

赵秋1(),陈鹏1,赵煜炜2,余澳1   

  1. 1.福州大学 土木工程学院,福州 350108
    2.武汉工程科技学院 信息工程学院,武汉 430200
  • 收稿日期:2022-08-24 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:赵秋(1976-),男,教授,博士. 研究方向:钢桥与组合结构桥梁. E-mail:zhaoqiu@fzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478120)

Overall mechanical performance of jointless bridges with arch structure behind abutment

Qiu ZHAO1(),Peng CHEN1,Yu-wei ZHAO2,Ao YU1   

  1. 1.School of Civil Engineering,Fuzhou University,Fuzhou 350108,China
    2.School of Information Engineering,Wuhan University of Engineering Science,Wuhan 430200,China
  • Received:2022-08-24 Online:2024-04-01 Published:2024-05-17

摘要:

基于实际连续预应力混凝土无缝桥结构的试设计,提出了一种台后设置拱形结构的新型整体式无缝桥梁。通过建立该新型结构的三维杆系计算模型与实体有限元模型,考虑桩基与桩周土之间相互作用,并按相似比原则设计半桥有机玻璃模型试验以验证模拟方法的正确性。采用经验证的数值模型建立台后设置拱形结构的全桥杆系模型与实体模型,分析矢跨比与桩长对桥梁整体受力性能的影响。分析结果表明:模型试验的位移和应力值与杆系模型差异分别为8%和21%,与实体模型差异分别为-3%和5.3%;随着矢跨比的增大、桩长的减小,拱脚所受的水平约束减小,拱顶的竖向位移相对减小,主梁所受的轴力逐渐减小,弯矩变化范围也逐渐降低。因此,选择桩长较短、矢跨比较大的无缝桥梁的整体受力性能更加优越。

关键词: 桥梁工程, 整体式无缝桥梁, 有机玻璃试验, 数值模拟, 拱形结构, 整体受力性能

Abstract:

Based on the trial design of the actual continuous prestressed concrete jointless bridge structure, the new type of integral jointless bridge with arch structure behind abutment was proposed. The three-dimensional beam-truss calculation model and the solid finite element model of the new structure was established. The effect of the interaction between the pile foundation and the soil around the pile was considered, and the half bridge organic glass model test was designed according to the principle of similarity ratio to verify the correctness of the simulation method. The verified numerical model was used to establish the full bridge beam-truss model and the full bridge solid model for the arch structure behind the abutment, and the effect of rise-span ratio and pile length on the overall mechanical performance was analyzed. The analysis results show that: The displacement and stress values of the model test are 8% and 21% different from those of the beam-truss model, and -3% and 5.3% different from those of the solid model. With the increase of rise-span ratio, the horizontal constraint on the arch foot decreases, the vertical displacement of the arch crown decreases relatively, the axial force on the main beam decreases gradually, and the bending moment variation range also decreases slightly, the horizontal force generated by the temperature is more transmitted to the arch structure behind the abutment. With the reduction of the pile length, the vertical displacement of the arch crown decreases, the shear force at the pile top decreases relatively, the axial force on the main beam decreases gradually, and the range of bending moment changes slightly decreases. Considering the actual foundation conditions, the jointless bridges with shorter pile length and larger rise-span ratio has better overall mechanical performance.

Key words: bridge engineering, integral jointless bridge, organic glass test, numerical simulation, arch structure, overall mechanical performance

中图分类号: 

  • U441

图1

台后设置拱形结构的无缝桥示意图"

图2

总体布置图单位:cm"

图3

三维框架简化模型"

图4

有限元模型"

图5

半桥有机玻璃模型试验"

图6

加载布置图"

图7

位移结果对比"

图8

应力结果对比"

图9

矢跨比对主梁伸缩量的影响"

图10

矢跨比对拱顶位移的影响"

图11

矢跨比对桩顶剪力的影响"

图12

矢跨比对拱脚水平反力的影响"

图13

矢跨比对边跨轴力的影响"

图14

矢跨比对边跨弯矩的影响"

图15

桩长对主梁伸缩量的影响"

图16

桩长对拱顶位移量的影响"

图17

桩长对桩顶剪力的影响"

图18

桩长对拱脚水平反力的影响"

图19

桩长对边跨轴力的影响"

图20

桩长对边跨弯矩的影响"

1 Briseghella B, 薛俊青, 兰成, 等. 整体式桥台桥梁极限长度[J]. 建筑科学与工程学报, 2014, 31(1):104-110.
Briseghella B, Xue Jun-qing, Lan Cheng,et al.Maximum length of integral abutment bridges[J]. Journal of Architecture and Civil Engineering, 2014, 31(1):104-110.
2 Xue J Q. Retro fit of existing bridges with concept of integral abutment bridge: static and dynamic parametric analyses[D]. Trento: University of Trento, 2013.
3 郭维强, Briseghella B, 薛俊青, 等. 无伸缩缝桥梁动力特性与抗震性能研究[J]. 建筑科学与工程学报,2021, 38(4): 89-100.
Guo Wei-qiang, Briseghella B, Xue Jun-qing,et al. Research on dynamic characteristics and seismic performance of jointless bridges[J]. Journal of Architecture and Civil Engineering, 2021, 38(4): 89-100.
4 彭大文, 洪锦祥, 郭爱民, 等. 无伸缩缝桥梁的动力特性计算与试验研究[J]. 地震工程与工程振动, 2005(2): 72-76.
Peng Da-wen, Hong Jin-xiang, Guo Ai-min, et al. Dynamic analysis and field-test of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2005(2): 72-76.
5 占雪芳, 邵旭东. 半整体式无缝桥中带预压缝的配筋接线路面温降效应[J]. 土木工程学报, 2011, 44(11): 74-78.
Zhan Xue-fang, Shao Xu-dong. Temperature effect of reinforced approach pavement of semi-integral abutment jointless bridge with pre-cutting cracks for temperature drops[J]. China Civil Engineering Journal, 2011, 44(11): 74-78.
6 陈宝春, 付毳, 庄一舟, 等. 中国无伸缩缝桥梁应用现状与发展对策[J]. 中外公路, 2018, 38(1): 87-95.
Chen Bao-chun, Fu Cui, Zhuang Yi-zhou, et al. The application status and development strategy of jointless bridges in China[J]. Journal of China & Foreign Highway, 2018, 38(1): 87-95.
7 黄福云, 庄一舟, 付毳,等. 无伸缩缝梁桥抗震性能与设计计算方法研究[J]. 地震工程与工程振动,2015, 35(5): 15-22.
Huang Fu-yun, Zhuang Yi-zhou, Fu Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22.
8 Ardalan S, Atorod A. Flexible Pile Head in Jointless Bridges: Experimental Investigation[J]. Journal of Bridge Engineering, 2015, 20(4): 9-20.
9 金晓勤, 邵旭东. 半整体式全无缝桥梁研究[J]. 土木工程学报, 2009, 42(9): 68-73.
Jin Xiao-qin, Shao Xu-dong. A study of fully jointless bridge-approach system with semi-integral abutment[J]. China Civil Engineering Journal, 2009, 42(9): 68-73.
10 Tobia Z, Briseghella B, Lan C. Parametric and pushover analyses on integral abutment bridge[J]. Engineering Structures, 2011, 33(2): 502-515.
11 Gabriele F, Cihan C, Flavia D L, et al. Integral abutment bridges:Investigation of seismic soil-structure interaction effects by shaking table testing[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1517-1538.
12 Brent M P, Adam S F, Lowell G, et al. Integral bridge abutment to approach slab connection[J]. Journal of Bridge Engineering, 2013, 18(2): 179-181.
13 Olivier B, Einpaul J, Muttoni A. Experimental investigation of soil-structure interaction for the transition slabs of integral bridges[J]. Structural Concrete, 2015, 16(4): 470-479.
14 Xue J Q, Briseghella B, Lin J H,et al. Design and field tests of a deck-extension bridge with small box girder[J].Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(6): 467-479.
15 洪锦祥. 整体式桥台桥梁的简化计算模型与受力性能研究[D]. 福州: 福州大学土木工程学院, 2006.
Hong Jin-xiang. Research on symolified calculating model and loaded behavior of integral abutment bridges[D]. Fuzhou: college of civil Engineering, Fuzhou University, 2006.
16 金永学, 徐栋, 郑明万, 等. 基于统一边界和梁格模型的整体式桥台桥梁分析[J]. 同济大学学报: 自然科学版, 2021, 49(1): 40-48.
Jin Yong-xue, Xu Dong, Zheng Ming-wan, et al. Analysis of an integral abutment bridge based on unified boundary condition and grillage model[J].Journal of Tongji University(Natural Science), 2021, 49(1):40-48.
17 黄福云, 张峰, 单玉麟, 等. 整体式桥台-桩基-土相互作用内力计算方法研究[J]. 中国公路学报, 2021,34(6): 69-79.
Huang Fu-yun, Zhang Feng, Shan Yu-lin, et al. Calculation method of internal force of integral abutment pile foundation-soil interaction[J]. China Journal of Highway and Transport, 2021, 34(6): 69-79.
18 中华人民共和国行业标准. 公路桥涵设计通用规范 ()[S]. 北京: 人民交通出版社, 2015.
19 朱伟庆, 刘永健, 衡江峰, 等. 采用不同下部结构形式的整体式无缝桥受力特征[J]. 建筑科学与工程学报, 2017, 34(1): 49-57.
Zhu Wei-qing, Liu Yong-jian, Heng Jiang-feng, et al. Mechanical characteristics of integral abutment bridges with different substructures[J].Journal of Architecture and Civil Engineering, 2017, 34(1): 49-57.
20 王先前, 郭晓燕, 严国齐. 整体式桥梁力学性能的关键参数分析[J]. 铁道科学与工程学报, 2018, 15(9): 2276-2284.
Wang Xian-qian, Guo Xiao-yan, Yan Guo-qi. Parametric study on the mechanical properties of integral bridges[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2276-2284.
[1] 张洪,朱志伟,胡天宇,龚燕峰,周建庭. 基于改进YOLOv5s的桥梁螺栓缺陷识别方法[J]. 吉林大学学报(工学版), 2024, 54(3): 749-760.
[2] 韩智强,谢刚,卓亚娟,骆佐龙,李华腾. 基于车轮-桥面相干激励的大跨连续梁桥振动响应[J]. 吉林大学学报(工学版), 2024, 54(2): 436-444.
[3] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[4] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[5] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[6] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[7] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[8] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[9] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[10] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[11] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[12] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[13] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[14] 王俊,李加武,王峰,张久鹏,黄晓明. 简化U形峡谷风速分布及其对悬索桥抖振响应的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1658-1668.
[15] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!