吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 3058-3063.doi: 10.13229/j.cnki.jdxbgxb.20230554

• 通信与控制工程 • 上一篇    

基于模糊理论的多源异构传感器数据融合模型

杨秋菊()   

  1. 西南石油大学 电气信息学院,成都 610500
  • 收稿日期:2023-04-27 出版日期:2024-10-01 发布日期:2024-11-22
  • 作者简介:杨秋菊(1983-),女,副教授.研究方向:电工电子技术,传感器技术.E-mail: yangqiuju006@yeah.net
  • 基金资助:
    国家自然科学基金项目(61501365);2023年南充市市校科技战略合作项目(23XNSYSX0026)

Multisource heterogeneous sensor data fusion model based on fuzzy theory

Qiu-ju YANG()   

  1. School of Electrical Engineering and Information,Southwest Petroleum University,Chengdu 610500,China
  • Received:2023-04-27 Online:2024-10-01 Published:2024-11-22

摘要:

传感器中存在大量重复、冲突、冗余数据,传统数据融合方法只能融合部分源数据,得出的目标监测数据可信度依旧较低,为此,本文提出一种基于模糊理论的多源异构传感器数据融合模型。利用D-S证据理论设计数据融合规则,通过概率分配函数、距离矩阵降低多源数据融合规则计算难度,采用二值型函数转换各数据源,使用支持度函数算出各数据源的支持度值,借助模糊理论量化算子得出OWA算子权重值,根据这两个值将冲突数据去除,重复数据融合,完成数据源融合。实验结果表明,本文方法能够有效降低各源数据融合误差,提升监测数据的可靠性,并能保证融合时间开销最短。

关键词: 模糊理论, D-S证据理论, 多源异构传感器, 多源数据融合, 支持度, 融合规则

Abstract:

There is a large amount of duplicate, conflicting, and redundant data in sensors, and traditional data fusion methods can only fuse partial source data, resulting in low credibility of target monitoring data. Therefore, a multi-source heterogeneous sensor data fusion model based on fuzzy theory is proposed. The D-S evidence theory is used to design data fusion rules, and the probability distribution function and distance matrix are used to reduce the calculation difficulty of multi-source data fusion rules. The binary function is used to convert each data source, and the support function is used to calculate the support value of each data source. The weight value of OWA operator is obtained with the help of fuzzy theory quantitative operator. According to these two values, conflicting data is removed, duplicate data is fused, and data source fusion is completed. The experimental results show that the proposed method can effectively reduce the fusion error of various source data, improve the reliability of monitoring data, and ensure the shortest fusion time cost.

Key words: fuzzy theory, D-S evidence theory, multi source heterogeneous sensors, multi source data fusion, support level, fusion rules

中图分类号: 

  • TN01

表1

传感器0~10 s内数据变化情况 (℃)"

时间/sH1H2H3H4H5H6H7H8
128.027.527.927.228.328.429.027.9
228.828.727.928.328.727.628.128.6
328.327.828.428.327.628.929.829.7
427.828.728.329.729.028.628.127.9
528.327.328.127.427.628.729.629.5
628.127.229.728.327.127.927.829.3
729.328.729.529.827.328.628.629.7
827.327.828.629.527.628.727.628.5
929.327.229.727.929.027.627.828.3
1028.327.728.027.327.329.527.629.7

图1

各传感器数据融合绝对误差分析"

图2

各传感器数据融合相对误差分析"

图3

各源数据融合时间开销对比"

1 宋永,杨阔,覃觅觅.基于循环神经网络的多模态无线传感数据自适应融合方法[J].传感技术学报,2023,36(1):141-146.
Song Yong, Yang Kuo, Qin Mi-mi. Adaptive fusion method of multimodal wireless sensor data based on recurrent neural network[J]. Chinese Journal of Sensors and Actuators, 2023,36(1): 141-146.
2 刘康,何明浩,韩俊,等.基于多传感器的雷达对抗侦察数据融合算法[J].系统工程与电子技术,2023,45(1):101-107.
Liu Kang, He Ming-hao, Han Jun, et al. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor[J]. Systems Engineering and Electronics, 2023,45(1): 101-107.
3 隗寒冰,白林.基于多源异构信息融合的智能汽车目标检测算法[J].重庆交通大学学报:自然科学版,2021,40(8):140-149.
Wei Han-bing, Bai Lin. Intelligent vehicle target detection algorithm based on multi-source heterogeneous information fusion[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2021,40(8): 140-149.
4 朱聪.基于时空预处理DS证据的同质传感器数据融合[J].仪表技术与传感器,2021(3):29-34, 62.
Zhu Cong. Homogeneous sensor data fusion based on spatio-temporal preprocessing ds evidence[J]. Instrument Technique and Sensor, 2021(3): 29-34, 62
5 陈义飞,郭胜,潘文安,等.基于多源传感器数据融合的三维场景重建[J].郑州大学学报:工学版,2021,42(2):80-86.
Chen Yi-fei, Guo Sheng, Pan Wen-an, et al. 3D scene reconstruction based on multi-source sensor data fusion[J]. Journal of Zhengzhou University(Engineering Science), 2021,42(2): 80-86.
6 刘康,何明浩,韩俊,等.基于多传感器的雷达对抗侦察数据融合算法[J].系统工程与电子技术,2023,45(1):101-107.
Liu Kang, He Ming-hao, Han Jun, et al. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor[J]. Systems Engineering and Electronics, 2023,45(1): 101-107.
7 Zhu C, Qin B, Xiao F, et al. A fuzzy preference-based dempster-shafer evidence theory for decision fusion[J]. Information Sciences, 2021, 570(1):306-322.
8 Gao X, Pan L, Deng Y. Quantum Pythagorean Fuzzy Evidence Theory (QPFET): a negation of quantum mass function view[J]. IEEE Transactions on Fuzzy Systems, 2021(99):1-14.
9 蔺万科,宋华,南新元,等.一种基于最优聚类中心与权重欧式距离的多源异质传感器数据融合方法[J].传感技术学报,2022,35(1):49-56.
Lin Wan-ke, Song Hua, Xin-yuan Nan, et al. A multi-source heterogeneous sensor data fusion method based on optimal clustering center and weighted euclidean distance[J]. Chinese Journal of Sensors and Actuators, 2022,35(1): 49-56.
10 Liu Q, Zhang H. Reliability evaluation of weighted voting system based on D-S evidence theory[J]. Reliability Engineering & System Safety, 2022, 217:199-214.
11 周恩帆,马俊,周永杰,等.一种D-S证据理论的多传感器数据融合算法[J].小型微型计算机系统,2022,43(4):795-800.
Zhou En-fan, Ma Jun, Zhou Yong-jie, et al. Multi-sensor data fusion algorithm based on D-S evidence theory[J]. Journal of Chinese Mini-Micro Computer Systems, 2022,43(4): 795-800.
12 Menezes R D, Salarolli P F, Batista L G, et al. Slopping index for LD converters based on sound and image data fusion by fuzzy Kalman filter[J]. Ironmaking & Steelmaking, 2022,49(2):178-188.
13 Xu Z, Zhao S, Zhang R. An efficient multi-sensor fusion and tracking protocol in a vehicle-road collaborative system[J]. IET Communications, 2021, 15(18):2330-2341.
14 莫慧凌,郑海峰,高敏,等.基于联邦学习的多源异构数据融合算法[J].计算机研究与发展,2022,59(2):478-487.
Mo Hui-ling, Zheng Hai-feng, Gao Min, et al. Multi-source heterogeneous data fusion based on federated learning[J]. Journal of Computer Research and Development, 2022,59(2): 478-487.
15 Wei Y, Lei C. Heterogeneous multi-sensor fusion with random finite set multi-object densities[J]. IEEE Transactions on Signal Processing, 2021,69:3399-3414.
16 唐莉,唐家银,程世娟.多源异构数据贝叶斯统计融合可靠性评估模型[J].机械强度,2022,44(1):126-132.
Tang Li, Tang Jia-yin, Cheng Shi-juan. Bayesian statistical fusion reliability evaluation model of multi-source heterogeneous data[J]. Journal of Mechanical Strength, 2022,44(1): 126-132.
17 Wu H, Han Y, Jin J, et al. Novel deep learning based on data fusion integrating correlation analysis for soft sensor modeling[J]. Industrial & Engineering Chemistry Research, 2021, 60(27):10001-10010.
18 冀振燕,吴梦丹,杨春,等.可扩展的融合多源异构数据的推荐模型[J].北京邮电大学学报,2021,44(3):106-111.
Ji Zhen-yan, Wu Meng-dan, Yang Chun, et al. Scalable recommendation models fusing multi-source heterogeneous data[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(3): 106-111.
19 张辉,黄向生.基于UKF的无线传感器异步数据融合优化算法[J].重庆大学学报,2021,44(5):115-123.
Zhang Hui, Huang Xiang-sheng. UKF-based optimization algorithm for asynchronous data fusion of wireless sensor[J]. Journal of Chongqing University, 2021,44(5): 115-123.
20 岳元龙,陈亚南,孙钦,等.基于有偏卡尔曼的多传感器数据融合研究[J].仪表技术与传感器,2022(1):82-86.
Yue Yuan-long, Chen Ya-nan, Sun Qin, et al. Research on multi?sensor data fusion based on biased kalman[J]. Instrument Technique and Sensor, 2022 (1): 82-86.
[1] 高海龙,徐一博,刘坤,李春阳,卢晓煜. 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报(工学版), 2024, 54(1): 155-161.
[2] 李雄飞,吴佳婧,张小利,王泽宇,冯云丛. 基于相对总变差结构提取的遥感图像融合[J]. 吉林大学学报(工学版), 2021, 51(5): 1775-1784.
[3] 滕志军,张宇,李昊天,孙铭阳. 复杂路网的自适应D⁃S证据理论地图匹配算法[J]. 吉林大学学报(工学版), 2021, 51(2): 524-530.
[4] 栾磊, 赵晓晖, 徐勇军. 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312.
[5] 王晓文1, 2, 赵宗贵3, 庞秀梅4, 刘敏5. 图的图像融合方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1203-1208.
[6] 陈传海, 杨兆军, 陈菲, 郝庆波, 许彬彬, 阚英男. 基于模糊数据包络分析的数控机床故障模式分析[J]. 吉林大学学报(工学版), 2013, 43(06): 1523-1528.
[7] 马德印, 梁艳春, 管仁初, 赵笑奢, 时小虎. 基于模糊理论和双向联想记忆神经网络的变压器老化评价[J]. 吉林大学学报(工学版), 2013, 43(05): 1331-1337.
[8] 潘伟涛1,谢元斌2,郝跃2,史江义2. 基于启发式链搜索的频繁子电路提取算法[J]. 吉林大学学报(工学版), 2011, 41(6): 1748-1753.
[9] 曹红玉,孙汉旭,贾庆轩,叶平,高欣. 基于改进的D-S证据理论的栅格地图构建[J]. 吉林大学学报(工学版), 2011, 41(4): 1126-1130.
[10] 赵一兵,王荣本,李琳辉,郭烈 . 基于D-S证据理论的障碍目标身份识别[J]. 吉林大学学报(工学版), 2008, 38(06): 1295-1299.
[11] 周洁敏, 韩静, 肖纪立. 利用数据融合来解决目标识别问题[J]. 吉林大学学报(工学版), 2001, (4): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!