吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 454-458.doi: 10.13229/j.cnki.jdxbgxb201402028

• 论文 • 上一篇    下一篇

基于贝叶斯网络的路网位置匿名区域估计

蔡朝晖1,2, 张健沛1, 杨静1   

  1. 1. 哈尔滨工程大学 计算机科学与技术学院, 哈尔滨 150001;
    2. 大庆师范学院 计算机科学与信息技术学院, 黑龙江 大庆 163712
  • 收稿日期:2013-03-20 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 张健沛(1956- ),男,教授,博士生导师.研究方向:数据挖掘,社会网络.E-mail:zhangjianpei@hrbeu.edu.cn E-mail:zhangjianpei@hrbeu.edu.cn
  • 作者简介:蔡朝晖(1968- ),女,副教授,博士研究生.研究方向:数据挖掘,隐私保护.E-mail:dq_caizhaohui@163.com
  • 基金资助:

    国家自然科学基金项目(61073041,61073043,61202274,61370083);高等学校博士学科点专项科研基金项目(20112304110011,20122304110012).

Anonymous area estimation method of path data based on Bayesian network

CAI Zhao-hui1,2, ZHANG Jian-pei1, YANG Jing1   

  1. 1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
    2. College of Computer Science and Information Technology, Daqing Normal University, Daqing 163712, China
  • Received:2013-03-20 Online:2014-02-01 Published:2014-02-01

摘要:

基于道路网络模型,结合路网数据,通过贝叶斯网络证据相关推理的概率计算,并利用最大似然理论确定最小匿名区域估计,提出了一种基于贝叶斯网络的路网位置匿名区域估计方法。仿真实验结果表明,该方法可为基于位置服务中的隐私保护提供适时、适度的匿名区域建议,提高了匿名时间和匿名精度,从而从整体上提高服务质量。该方法还可以利用已知路网数据,进行客观推理,为个性化匿名需求提供合理建议,解决了移动用户查询中较多的不确定性问题。

关键词: 人工智能, 位置隐私保护, 查询敏感度, 贝叶斯网络推理, 个性化隐私需求, 最小匿名区域估计

Abstract:

In this paper, an anonymous area estimation method of path data based on Bayesian network is proposed. This method is based on the path network model, combined with road network data, and the maximum likelihood theory is used to determine the minimum anonymous region estimation. Simulation results show that the proposed anonymous area estimation method can provide timely and proper anonymous region suggestion for the privacy protection based on the position service, thus, the service quality in terms of anonymous time and precision. The proposed method also makes use of the known path data for objective reasoning and providing reasonable suggestion to individuation anonymous demands, which solves the major uncertainty problems in the mobile user queries.

Key words: artificial intelligence, location privacy protection, query sensitivity, Bayesian network, personal privacy requirements, anonymous area estimation

中图分类号: 

  • TP309

[1] Authorities: GPS system used to stalk woman. USA Today.[DB/OL] http://www.usatoday.com/ tech/new/2002-12-30-gps-stalker_x.htm, 2002.

[2] Gedik B, Liu L. Location privacy in mobile systems: a personalized anonymization model[C]//Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, Columbus: IEEE Computer Society, 2005: 620-629.

[3] Chow C, Mokbel M F. Enabling private continuous queries for revealed user locations[C]//Proceedings of the 10th International Conference on Advances in Spatial and Temporal Databases. Boston: Springer, 2007: 258-275.

[4] Mokbel M F. Privacy in location-based services: state-of-the-art and research directions[C]//Proceedings of 8th International Conference on Mobile Data Management, Mannheim, 2007:228.

[5] Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking[C]//Proceedings of the International Conference on Mobile Systems, Applications, and Services, Scan Francisco, 2003:163-168.

[6] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, et al. Private queries in location based services: anonymizers are not necessary[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD, 2008:121-132.

[7] Xiao Z, Xu J, Meng X F. P-sensitivity: a semantic privacy-protection model for location-based services[C]//Proceedings of PALMS2008, China, 2008:47-54.

[8] Gedik Bugra, Liu Ling. Protecting location privacy with personalized k-anonymity: architecture and algorithms[J]. IEEE Transactions on Mobile Computing, 2008, 7(1): 1-18.

[9] Baik Hoh, Marco Gruteser. Protecting location privacy through path confusion[C]//Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks, Athens, 2005: 194-205.

[10] Machanavajjhala A, Gehrke J, Kifer D. L-diversity: privacy beyond K-anonymity[C]//Proceedings of 22nd International Conference on Data Engineering, Atlanta, 2006: 24-35.

[11] Wang Ting, Liu Ling. Privacy-aware mobile services over road networks[C]//Proceedings of the VLDB Endowment, Lyon, 2009, 2(1): 1042-1053.

[12] Chow C, Mokbel M F, Bao J, et al. Query-aware location anonymization for road networks[J]. GeoInformatica, 2011, 15(3): 571-607.

[13] Li Fei-fei, Cheng Di-han, Marios Hadjieleftheriou, et al. On trip planning queries in spatial databases[C]//Proceedings of 9th International Symposium, SSTD 2005. Berlin: Springer, 2005: 273-290.

[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!