吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1779-1783.doi: 10.13229/j.cnki.jdxbgxb201506007

• • 上一篇    下一篇

基于分段思想的变截面连续梁桥动力特性计算

刘寒冰1, 时成林1,2, 谭国金1, 王华1, 黄彬1   

  1. 1.吉林大学 交通学院,长春 130022;
    2.吉林省交通科学研究所 科研开发中心,长春 130012
  • 收稿日期:2014-07-08 出版日期:2015-11-01 发布日期:2015-11-01
  • 通讯作者: 谭国金(1981-),男,副教授,博士.研究方向:桥梁检测与加固.E-mail:tgj@jlu.edu.cn
  • 作者简介:刘寒冰(1957-),男,教授,博士生导师.研究方向:桥梁检测与加固.E-mail:lhb@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478203)

Calculation method of the dynamic characteristics of continuous beam bridge with variable cross-section based on staging concept

LIU Han-bing1, SHI Cheng-lin1,2, TAN Guo-jin1, WANG Hua1, HUANG Bin1   

  1. 1.College of Transportation, Jilin University,Changchun 130022,China;
    2.Scientific Research and Development Center,Jilin Provincial Transport Scientific Research Institute, Changchun 130012, China
  • Received:2014-07-08 Online:2015-11-01 Published:2015-11-01

摘要: 对连续梁桥的每一跨进行分段,采用待定系数表示每一段的振型函数,并且依据段间的连续条件建立每一跨内待定系数的传递方程。依据全部边界条件和传递方程,形成全桥待定系数的求解方程,通过对待定系数方程的求解便可计算出桥梁的自振频率和振型。最后,采用该方法对一座连续梁桥的动力特性进行求解,验证了该方法的有效性和可靠性。

关键词: 连续梁桥, 变截面, 动力特性, 分段算法

Abstract: A calculation method of the dynamic characteristics of continuous beam bridge with variable cross-section is proposed based staging concept. In this method, each cross of a girder bridge is segmented; the undetermined coefficients are used to express the vibration mode function of each segment; the transfer equations within the undetermined coefficients of each cross are established based on intersegmental continuity condition. The equations of the full-bridge undetermined coefficients are formed based on all the boundary conditions and transfer equations. The method is able to calculate the natural frequency and vibration mode of the bridge by solving the equations of undetermined coefficients. This method is applied to solve the dynamic characteristics of a continuous box girder bridge to demonstrate its validity and reliability.

Key words: continuous beam bridge, variable cross-section, dynamic characteristics, segmentation algorithm

中图分类号: 

  • U441
[1] Laura P A A, Gutierrez R H, Rossi R E. Free vibration of beams of bilinearly varying thickness[J]. Ocean Engineering,1996,23(1):1-6.
[2] Naguleswaran S. Vibration in the two principal pla-nes of a non-uniform beam of rectangular cross-section one side of which varies as the square root of the axial coordinate[J]. Journal of Sound and Vibration,1994,172(3):305-319.
[3] Mao Q B. Free vibration analysis of multiple-stepped beams by using adomian decomposition method[J]. Mathematical and Computer Modeling,2011,54(1-2):756-764.
[4] Mao Q B, Pietrzko S. Free vibration analysis of stepped beams by using adomian decomposition method[J]. Applied Mathematics and Computation,2010,217(7):3429-3441.
[5] 徐腾飞,向天宇,赵人达. 变截面Euler-Bernoulli梁在轴力作用下固有振动的级数解[J]. 振动与冲击,2007,26(11):99-101,186.
Xu Teng-fei,Xiang Tian-yu, Zhao Ren-da. Series solution of natural vibration of the variable cross-section euler-bernoulli beam under axial force[J]. Journal of Vibration and Shock,2007,26(11):99-101,186.
[6] 张怀静,潘旦光. 变截面连续梁动力特性的半解析解法[J].北京科技大学学报,2008,30(6):590-593,619.
Zhang Huai-jing, Pan Dan-guang. Semi-analytic solution to dynamic characteristics of non-uniform continuous beams[J]. Journal of University of Science and Technology Beijing,2008,30(6):590-593,619.
[7] 李俊,金咸定. Timoshenko 薄壁梁弯扭耦合振动的动态传递矩阵法[J]. 振动与冲击,2001,20(4):57-59,61.
Li Jun,Jin Xian-ding. Dynamic transfer matrix method for bending-torsional vibration of timoshenko thin-walled beam[J]. Journal of Vibration and Shock, 2001, 20(4): 57-59,61.
[8] 楼梦麟,任志刚. Timoshenko简支梁的振动模态特性精确解[J].同济大学学报,2002, 30(8):911-915.
Lou Meng-lin, Ren Zhi-gang. Precise solution to modal characteristics of Timoshenko pin-ended beams[J]. Journal of Tongji University(Natural Science),2002,30(8):911-915.
[9] 崔灿,蒋晗,李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击,2012,31(14):85-88.
Cui Can,Jiang Han,Li Ying-hui.Semi-analytical method for calculating vibration characteristics of variable cross-section beam[J].Journal of Vibration and Shock,2012,31(14):85-88.
[1] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[2] 刘玉, 姚成, 那景新. 可提高客车侧翻安全性的变截面冲压立柱结构设计[J]. 吉林大学学报(工学版), 2014, 44(01): 17-21.
[3] 姜浩1,2, 郭学东2, 张艳辉2. 基于时域分析的风载激励下桥梁结构动力特性识别[J]. 吉林大学学报(工学版), 2011, 41(05): 1279-1283.
[4] 刘寒冰,何岩,魏海斌,刘昊. 聚丙烯纤维改良粉煤灰土的动力特性[J]. 吉林大学学报(工学版), 2010, 40(03): 672-0675.
[5] 王保群,张强勇,张凯,张哲 . 自锚式斜拉-悬吊协作体系桥梁动力性能[J]. 吉林大学学报(工学版), 2009, 39(03): 686-0690.
[6] 刘畅,王靖宇,桑涛,梁天也,胡兴军 . 大型载货汽车驾驶室与货厢间隙
对气动力特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(02): 280-0285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!