吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 43-49.doi: 10.13229/j.cnki.jdxbgxb201601007

• • 上一篇    下一篇

基于客观心理声学参数的重型商用车车内异响噪声分析

高印寒1, 张澧桐2, 梁杰1, 王智博1, 姜文君3   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室 长春 130022;
    2.吉林大学 仪器科学与电气工程学院 长春 130061;
    3.中国第一汽车股份有限公司 技术中心,长春 130011
  • 收稿日期:2014-08-20 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 梁杰(1965-),男,高级工程师.研究方向:车辆振动与噪声测试.E-mail:liangjie1965@163.com
  • 作者简介:髙印寒(1951-),男,教授,博士生导师.研究方向:车辆测试技术及仪器.E-mail:yinhan@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20126007,20130206031GX)

Abnormal noise analysis for commercial vehicle cab based on psychoacoustics

GAO Yin-han1, ZHANG Li-tong2, LIANG Jie1, WANG Zhi-bo1, JIANG Wen-jun3   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University,Changchun 130022,China;
    2.College of Instrument Science and Electrical Engineering, Jilin University, Changchun 130061,China;
    3.R&D Center, FAW Group Corporation, Changchun 130011,China
  • Received:2014-08-20 Online:2016-01-30 Published:2016-01-30

摘要: 针对某款重型商用车内的“异响”,基于道路试验和仿真计算,结合声品质主观评价和频谱分析,引入响度、尖锐度和粗糙度3个声品质客观心理声学参数,对驾驶室声振特性和驾驶室内的噪声分布进行分析研究,识别车内“异响”产生机理并提出相应的控制策略。研究结果表明:70 km/h时驾驶室内噪声异常。影响车内声品质的频率主要集中在22~36 Hz和56~90 Hz。通过激励与声振传递特性分析,其原因分别是25 Hz附近较高的结构激励和58 Hz附近的驾驶室结构与声腔的耦合共振。驾驶室内低频噪声声压分布呈现横向底部两侧大、中间小的状态;0~1Bark的响度分布表现为横向底部两侧大,中间无衰减的噪声异常分布状态。

关键词: 汽车工程, 车内异响, 声品质评价, 客观心理声学参数, 声-固耦合, 噪声分布

Abstract: In this paper three psychoacoustic parameters, loudness, sharpness and roughness, are introduced to evaluate the abnormal noise for commercial vehicle cab. The noise transfer and acoustics distribution characters of the vehicle are investigated and analyzed by means of field measurements and virtual simulation based on subjective evaluation of sound quality and frequency characteristics analysis. Identification of the abnormal cab noise is made to find a control method. The results show that the abnormal noise for commercial vehicle cab occurs at the vehicle speed of 70 km/h. the sound quality of the vehicle cab is mainly affected at the frequency ranges of 22-36 Hz and 56-90 Hz. The main reasons are the higher structure excitation near frequency 25 Hz, and the resonance coupling of the cab structure and cavity at 58 Hz by the exterior vibration and noise transfer characters, respectively. At low frequency, the interior sound pressure distribution is higher in the underside and lower in the middle at the cross-section. The loudness distribution is also higher in the underside, but not lower in the middle at the cross-section at 0-1 Bark.

Key words: vehicle engineering, abnormal noise, sound quality, psychoacoustics parameters, acoustic-structure coupling, noise distribution

中图分类号: 

  • TB53
[1] Winfried K. Sound quality evaluation in the product cycle[J].Acta Acustica United with Acustica, 1997, 83(5): 784-788.
[2] Hussain Schiffbanker. Development and application of an evaluation technique to assess the subjective character of engine noise[C]//SAE Paper,911081.
[3] Hashimoto T. Sound quality approach on vehicle interior and exterior noise-quantification of frequency related attributes and impulsiveness[J].Journal of Acoustical Society of Japan, 2000,21(6):337-340.
[4] 张伟,蒋伟康. 基于心理声学分析的车内异常噪声辨识[J]. 汽车工程, 2003,25(6):603-605.
Zhang Wei, Jiang Wei-kang. Identification of abnormal in-car noise based on psychoacoustics analysis[J]. Automotive Engineering,2003,25(6):603-605.
[5] Ronacher A W. Evaluating vehicle interior noise quality under transient driving condition[C]//SAE Paper, 1999-01-1683.
[6] 庞剑,谌刚,何华. 汽车噪声与振动——理论与应用[M]. 北京:北京理工大学出版社,2006.
[7] Pietila Glenn, Lim Teik C. Intelligent systems approaches to product sound quality evaluations—a review[J]. Applied Acoustics, 2012,73(10):987-1002.
[8] 高印寒,唐荣江,梁杰,等. 汽车声品质的GA-BP神经网络预测与权重分析[J]. 光学精密工程, 2013,21(2): 462-468.
Gao Yin-han, Tang Rong-jiang, Liang Jie,et al. Vehicle sound quality GA-BP neural network prediction and weight analysis[J]. Optics and Precision Engineering, 2013, 21(2): 462-468.
[9] Zwicker E,Fastl H. Psychoacoustics:Facts and Models[M]. 2nd ed. New York:Springer,2007.
[10] René Visser. Virtual transfer path analysis at daimler trucks[C]//SAE Paper, 2009-01-2243.
[11] 马天飞,高刚,王登峰. 基于声固耦合模型的车内低频结构噪声响应分析[J]. 机械工程学报, 2011, 47(15):76-82.
Ma Tian-fei, Gao Gang, Wang Deng-feng.Response analysis of interior structure noise in lower frequency based on structure-acoustic coupling model[J]. Journal of Mechanical Engineering, 2011, 47(15):76-82.
[1] 韩玲, 张立斌, 安颖, 李春荣, SohelAnwar. 无级变速器电液控制系统关键技术[J]. 吉林大学学报(工学版), 2014, 44(5): 1247-1252.
[2] 陈书明, 王登峰, 季枫, 苏丽俐, 雷应锋. 基于声场空间变换方法的轿车加速行驶车外噪声预测[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 45-50.
[3] 高印寒, 唐荣江, 梁杰, 樊宽刚, 张澧桐, 钱堃. 基于径向基函数神经网络的车内噪声品质评价系统[J]. , 2012, (06): 1378-1383.
[4] 张杨, 刘昕晖. 铰接车体转向横摆稳定性[J]. 吉林大学学报(工学版), 2012, 42(02): 266-271.
[5] 玄圣夷, 白海英, 左文杰, 宋传学. 基于横摆角速度预测的制动防抱死系统单轮修正控制策略[J]. 吉林大学学报(工学版), 2012, 42(02): 261-265.
[6] 孙喜龙, 王登峰, 卢放, 陈晓斌. 基于提高轿车后面抗撞性能的后纵梁结构优化[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 87-91.
[7] 刘玉梅,苏建,曹晓宁,熊伟,宋学忠. 基于模糊数学的汽车悬架系统故障诊断方法[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 220-0224.
[8] 唐洪斌,王登峰 . 前端结构对正面安全气囊不起爆速度阈值的影响[J]. 吉林大学学报(工学版), 2008, 38(04): 773-777.
[9] 李静,刘学,赵健 . 基于蚁群寻优的汽车牵引力PID控制参数整定[J]. 吉林大学学报(工学版), 2008, 38(04): 769-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!