吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 35-42.doi: 10.13229/j.cnki.jdxbgxb201601006

• • 上一篇    下一篇

基于疲劳寿命的轿车后悬架扭转梁轻量化设计

蒋荣超1, 王登峰1, 秦民2, 蒋永峰2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.中国第一汽车股份有限公司 技术中心,长春 130011
  • 收稿日期:2014-08-17 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 王登峰(1963-),男,教授,博士生导师.研究方向:汽车轻量化设计与应用.E-mail:caewdf@jlu.edu.cn
  • 作者简介:蒋荣超(1985-),男,博士研究生.研究方向:汽车轻量化设计与应用.E-mail:jrch123@126.com
  • 基金资助:
    吉林省科技发展计划重大项目(20126004); 吉林大学研究生创新基金项目(2015084)

Lightweight design of twist beam of rear suspension of passenger car based on fatigue life

JIANG Rong-chao1, WANG Deng-feng1, QIN Min2, JIANG Yong-feng2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.R&D Center, FAW Group Corporation, Changchun 130011, China
  • Received:2014-08-17 Online:2016-01-30 Published:2016-01-30

摘要: 以某国产轿车后悬架扭转梁的轻量化为研究目标,利用多体动力学软件建立考虑后悬架扭转梁柔性的整车刚柔耦合模型,并通过扭转梁自由模态试验和整车行驶平顺性实车道路试验验证了模型的正确性。在耐久性强化路面上进行整车动力学仿真分析,计算扭转梁模态位移时间历程,通过模态应力恢复得到扭转梁应力时间历程,并采用名义应力法进行疲劳寿命分析。基于网格变形技术建立扭转梁参数化模型并定义设计变量,以质量和疲劳寿命为优化目标,以一阶扭转模态频率和扭转刚度为约束条件,结合Kriging近似模型和多目标粒子群优化算法对扭转梁进行多目标优化设计,获取Pareto最优解集,并选取一个最优解验证扭转梁轻量化效果。结果表明,在使疲劳寿命满足设计要求的同时,优化后扭转梁质量减少20.35%,轻量化效果比较明显。

关键词: 车辆工程, 轻量化设计, 模态应力恢复, 疲劳寿命, 网格变形, 粒子群优化

Abstract: This paper studies the lightweight design method of the twist beam of rear suspension of a domestic passenger car. The whole vehicle's rigid-flexible coupling model with flexible twist beam was built using multi-body dynamics software. Modal test of the twist beam in a free-free configuration and vehicle road test of ride comfort were carried out to verify the validity of the proposed model. On this basis, the modal displacement time history of the twist beam was calculated from a dynamic simulation on the durability enhancement road. Then the stress time history of the twist beam was obtained based on Modal Stress Recovery (MSR). According to the nominal stress method, fatigue life of the twist beam was assessed. Furthermore, mesh morphing technology was employed to build the parametric model of the twist beam, which was used to define the design variables. Then, the Kriging approximation model and particle swarm algorithm were adopted to perform the multi-objective optimization of the twist beam. The mass and fatigue life were defined as the objective functions, while the first modal frequency and torsional stiffness were taken as the constraints. The Pareto optimal set was found and one of the optimal solutions was chosen to check the effectiveness of the optimization method. The results indicate that the weight of the optimized twist beam is reduced 20.35% while its fatigue life satisfies the design requirement.

Key words: vehicle engineering, lightweight design, modal stress recovery, fatigue life, mesh morphing, particle swarm optimization

中图分类号: 

  • U463.33
[1] 郑松林, 王彦生, 卢曦, 等. 基于强度变化特征的汽车结构件轻量化设计方法[J]. 机械工程学报, 2008, 44(2): 129-133.
Zheng Song-lin, Wang Yan-sheng, Lu Xi, et al. Weight-reduction design of auto structures based on strength features[J]. Chinese Journal of Mechanical Engineering, 2008, 44(2): 129-133.
[2] 王平, 郑松林, 吴光强. 基于协同优化和多目标遗传算法的车身结构多学科优化设计[J]. 机械工程学报, 2011, 47(2): 102-108.
Wang Ping, Zheng Song-lin, Wu Guang-qiang. Multidisciplinary design optimization of vehicle body structure based on collaborative optimization and multi-objective genetic algorithm[J]. Chinese Journal of Mechanical Engineering, 2011, 47(2): 102-108.
[3] 王新宇, 王登峰, 陈静, 等. 重型商用车驾驶室轻量化设计[J]. 农业机械学报, 2012, 43(8): 13-18.
Wang Xin-yu, Wang Deng-feng, Chen Jing, et al. Lightweight design for heavy-duty truck cab[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 13-18.
[4] 王书亭, 刘啸, 吴义忠, 等. 基于灵敏度分析的车架轻量化及疲劳寿命估算[J]. 中国机械工程, 2011, 22(16): 2001-2006.
Wang Shu-ting, Liu Xiao, Wu Yi-zhong, et al. Sensitivity-based analysis of light weighting and fagtigue life estimation for truck frame[J]. China Mechanical Engineering, 2011, 22(16): 2001-2006.
[5] 曹正林, 李骏, 郭孔辉. 基于虚拟试车场的轿车悬架耐久性强化试验仿真研究[J]. 机械工程学报, 2012, 48(10): 122-127.
Cao Zheng-lin, Li Jun, Guo Kong-hui. Research on passenger car suspension durability using virtual proving ground[J]. Chinese Journal of Mechanical Engineering, 2012, 48(10): 122-127.
[6] Hu Zhi-gang, Zhu Ping, Meng Jin. Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: experiment, modeling and application[J]. Materials & Design, 2010, 31(6): 2884-2890.
[7] 王登峰,郝赫,刘盛强,等. 车架弹性对重型载货汽车行驶平顺性的影响[J]. 农业机械学报, 2010, 41(12):7-12.
Wang Deng-feng, Hao He, Liu Sheng-qiang, et al. Frame flexibility's effect on ride comfort of heavy-duty truck[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(12):7-12.
[8] Gu Zheng-qi, Mi Cheng-ji, Wang Yu-tao, et al. A-type frame fatigue life estimation of a mining dump truck based on modal stress recovery method[J]. Engineering Failure Analysis, 2012, 26: 89-99.
[9] 门玉琢. 基于ADAMS的重型载货汽车可靠性仿真与试验研究[D]. 长春:吉林大学汽车工程学院, 2009.
Men Yu-zhuo. Reliability simulation and test of heavy-duty truck based on ADAMS[D]. Changchun: College of Automotive Engineering, Jilin University, 2009.
[10] Hong H J, Strumpfer S D. Virtual road load data acquisition for twist axle rear suspension[C]∥SAE Paper, 2011-01-0026.
[11] 郭虎. 汽车试验场可靠性强化试验强化系数的研究[D]. 杭州:浙江大学机械与能源工程学院, 2003.
Guo Hu. Research of enhancement coefficient of automobile reliability enhancement test on proving ground[D]. Hangzhou:College of Mechanical and Energy Engineering,Zhejiang University, 2003.
[12] Petracconi C L, Ferreira S E, Palma E S. Fatigue life simulation of a rear tow hook assembly of a passenger car[J]. Engineering Failure Analysis,2010,17(2): 455-463.
[13] 李飞. 轿车转向节耐久性寿命预测研究[D]. 长春:吉林大学汽车工程学院, 2010.
Li Fei. Research on durability life prediction of passenger car's steering knuckle[D]. Changchun: College of Automotive Engineering, Jilin University, 2010.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[15] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!