吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 457-464.doi: 10.13229/j.cnki.jdxbgxb201602019

• 论文 • 上一篇    下一篇

真空颗粒系统有效导热系数测量试验台研制及试验

崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元   

  1. 哈尔滨工业大学 宇航空间机构及控制中心,哈尔滨 150001
  • 收稿日期:2014-08-20 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 侯绪研(1982-),男,副教授,硕士生导师.研究方向:星球车采样技术.E-mail:houxuyan@hit.edu.cn E-mail:cuijinsheng86625@163.com
  • 作者简介:崔金生(1986-),男,博士研究生.研究方向:星球采样技术.E-mail:cuijinsheng86625@163.com
  • 基金资助:
    国家自然科学基金项目(51105092)

Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum

CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan   

  1. Research Center of Aerospace Mechanism and Control, Harbin Institute of Technology, Harbin 150001, China
  • Received:2014-08-20 Online:2016-02-20 Published:2016-02-20

摘要: 基于稳态热流计法,研制了可实现不同真空环境和温度下测试颗粒系统有效导热系数的试验台,并基于此试验台对HIT-LS1#型模拟月壤在不同真空度和不同温度下进行了有效导热系数测定试验.试验结果显示:模拟月壤的有效导热系数随着温度的升高而增大,并随着真空度的提高而减小.真空度对颗粒系统的有效导热系数存在较大影响,尤其是在高真空的情况下.

关键词: 工程热物理, 试验台研制, 热流计法, 有效导热系数, 颗粒系统, 模拟月壤, 真空

Abstract: Based on steady-state heat metering method, a measurement system is developed, which can be used to test the effective conductivity of a granular system under different temperature and vacuum degree. Using this measurement system, experiments for HIT-LS1# lunar soil simulant are conducted. The results show that the effective thermal conductivity of the lunar soil simulant increases with temperature, and decreases with the increase in vacuum degree. Vacuum degree has on obvious impact on the effective thermal conductivity, especially in the case of high vacuum.

Key words: engineering thermophysics, measurement system development, heat flow meter method, effective thermal conductivity, granular system, lunar soil simulant, vacuum

中图分类号: 

  • TK121
[1] 欧阳自远,张熇. 从人造卫星到月球探测器[M]. 上海:上海科技教育出版社,2007:155-160.
[2] Cui Jin-sheng, Hou Xu-yan, Zhao De-ming,et al. Experimental research on temperature rise of bit in drilling normal and low temperature lunar soil simulant[J]. Applied Mechanics and Materials, 2013, 373-375: 2008-2014.
[3] Cui Jin-sheng, Hou Xu-yan, Zhao De-ming,et al. Thermal simulation and experiment of lunar drill bit in vacuum[J]. Telkomnika, 2014, 12 (6): 4756-4763.
[4] Cremers C, Birkebak R, Dawson J. Thermal conductivity of fines from Apollo 11[C]//The Apollo 11 Lunar Science Conference, Houston, USA, 1970: 2045-2050.
[5] Cremers C, Birkebak R. Thermal conductivity of fines from Apollo 12[C]//The Second Lunar Science Conference,Houston, USA, 1971: 2311-2315.
[6] Keihm S, Langseth M. Surface brightness temperatures at the Apollo 17 heat flow site: Thermal conductivity of the upper 15cm regolith[C]//The Fourth Lunar Science Conference,Houston, USA, 1973: 2503-2513.
[7] Woodside W, Messmer J H. Thermal conductivity of porous media I unconsolidated sands[J]. J Appl Phys, 1961, 32(9):1688-1698.
[8] Tavman S, Tavman I H. Measurement of effective thermal conductivity of wheat as a function of moisture contact[J]. Int Commun J HeatMass Transfer, 1998, 25(5): 733-741.
[9] Bala K, Pradhan P R, Saxena N S,et al. Effective thermal conductivity of copper powders[J]. J Phys D Appl Phys, 1989, 22(8): 1068-1072.
[10] 高崇,潘银珍,朱炳辰. 催化剂颗粒有效导热系数试验研究[J]. 吉林化工学院学报,1998,15(1):1-6.
Gao Chong, Pan Yin-zhen, Zhu Bing-chen. Experimental study on effective thermal conductivity of catalyst pellets[J]. Journal of Jilin Institute of Chemical Technology,1998,15(1):1-6.
[11] 张建智,周孑民,章世斌. 稳态圆筒壁法自动测量颗粒导热系数的改进[J]. 有色金属,2004,56(4):146-149.
Zhang Jian-zhi, Zhou Jie-min, Zhang Shi-bin. Improvement of particle thermal conductivity automatic measuring with steady cylinder method[J]. Nonferrous Metals,2004,56(4):146-149.
[12] 毕胜山,吴江涛,史琳. 纳米颗粒TiO 2 /HFC134a工质导热系数试验研究[J]. 工程热物理学报,2008,29(2):205-207.
Bi Shen-shan, Wu Jiang-tao, Shi Lin. The thermal conductivity of the nanoparticles TiO 2 and HFC134a mixtures[J]. Journal of Engineering Thermophysics,2008,29(2):205-207.
[13] 刘晓燕,郑春媛,张雪萍,等. 两相颗粒多孔材料导热系数研究[J]. 工程热物理学报,2010,31(3):480-482.
Liu Xiao-yan, Zheng Chun-yuan, Zhang Xue-ping,et al. Study on thermal conductivity of two-phase granular porous material[J]. Journal of Engineering Thermophysics,2010,31(3):480-482.
[14] 于明志,陈汉翠,胡爱娟,等. 水分含量对颗粒型含湿多孔介质导热系数的影响及机理[J]. 工程热物理学报,2013,34(10):1910-1913.
Yu Ming-zhi, Chen Han-cui, Hu Ai-juan,et al. The influence mechanism of moisture content on thermal conductivity of unsaturated wet porous medium[J]. Journal of Engineering Thermophysics,2013,34(10):1910-1913.
[15] Weidenfeld G, Weiss Y, Kalman H. The effect of compression and preconsolidation on the effective thermal conductivity (ETC) of particulate beds[J]. Powder Technol, 2002, 133(1): 15-22.
[16] Bahrami M, Yovanovich M M, Culham J R. Effective thermal conductivity of rough spherical packed beds[J]. Int J Heat Mass Transfer, 2006, 49(19): 3691-3701.
[17] Vargas W L, McCarthy J J. Stress effects on the conductivity of particulate beds[J]. Chem Eng Sci, 2002, 57(15): 3119-3131.
[18] Vargas W L, McCarthy J J. Thermal expansion effects and heat conduction in granular materials[J]. Phys Rev E, 2007, 76(4): 041301.
[19] Nguyen V D, Cogné C, Guessasma M, et al. Discrete modeling of granular flow with thermal transfer: application to the discharge of silos[J]. Appl Therm Eng, 2008, 29(8): 1846-1853.
[20] Bahrami M, Yovanovich M M, Culham J R. Thermal joint resistances of nonconforming rough surfaces with gas-filled gaps[J]. J Thermophys Heat Transfer, 2004, 18(3): 326-332.
[21] Bahrami M, Culham J R, Yovanovich M M, et al. Review of thermal joint resistance models for non-conforming rough surfaces[J]. Appl Mech Rev, 2006, 59(1): 1-12.
[22] Zhang H W, Zhou Q, Xing H L, et al. A DEM study on the effective thermal conductivity of granular assemblies[J]. Powder Technology, 2011, 205(1): 172-183.
[23] 李小波,唐大伟,祝捷. 纳米金刚石颗粒导热系数的分子动力学研究[J]. 中国科学院研究生院学报,2008,25(5):598-601.
Li Xiao-bo, Tang Da-wei, Zhu Jie. Molecular dynamics study on thermal conductivity of diamond nanoparticles[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2008,25(5):598-601.
[24] 徐泽敏,殷涌光,吴文福,等. 稻谷真空干燥中工艺参数对降水幅度的影响[J].吉林大学学报:工学版, 2008,32(2):493-496.
Xu Ze-min, Yin Yong-guang, Wu Wen-fu, et al. Effects of processing parameters on reduction of moisture content in paddy vacuum drying[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,32(2):493-496.
[25] 徐成海. 真空工程技术[M]. 北京:化学工业出版社,2006:333-334.
[1] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[2] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] 孟育博, 张幽彤, 王志明, 张晓晨, 樊利康, 李涛. 压电喷油器压电执行器热-电-机械耦合迟滞特性[J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[4] 黄晗, 李建桥, 陈百超, 吴宝广, 邹猛. 着陆器足垫冲击特性模型试验[J]. 吉林大学学报(工学版), 2017, 47(4): 1194-1200.
[5] 吴志军, 赵文伯, 张青. 基于热氛围燃烧器的湍流射流起升火焰基础研究进展[J]. 吉林大学学报(工学版), 2016, 46(6): 1881-1891.
[6] 上官爱红, 张昊苏, 王晨洁, 秦德金, 刘朝晖. 空间二维运动机构的热真空准加速寿命试验设计[J]. 吉林大学学报(工学版), 2016, 46(1): 186-192.
[7] 齐子姝, 高青, 刘研, 白莉. 地能利用热泵系统模型计算及其多年运行工况分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[8] 李建桥,黄晗,党兆龙,邹猛,王洋. 轻载荷条件下的筛网轮沉陷[J]. 吉林大学学报(工学版), 2015, 45(1): 167-173.
[9] 齐子姝, 高青, 刘研, 于鸣. 联供模式地下换热器温变及其热泵效能分析[J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[10] 刘静波,马爽,林松毅,刘博群,杨军,王二雷. 高锌蛋粉真空冷冻干燥工艺参数优化及冲调性能[J]. 吉林大学学报(工学版), 2011, 41(6): 1798-1804.
[11] 尹丽妍, 吴文福, 张亚秋. 真空干燥条件下的玉米介电特性[J]. 吉林大学学报(工学版), 2010, 40(06): 1629-1633.
[12] 邹猛,李建桥,张金换,刘国敏,李因武. 月球车驱动轮在不同介质上的牵引性能[J]. 吉林大学学报(工学版), 2010, 40(01): 25-0029.
[13] 高印寒,陈王锋,程鹏,李振雷,池俊成,李强 . 旋风分离器两相三维流场仿真
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 85-0089.
[14] 徐泽敏,殷涌光,吴文福,尹丽妍 . 稻谷真空干燥中工艺参数对降水幅度的影响
[J]. 吉林大学学报(工学版), 2008, 38(02): 493-0496.
[15] 李忠建,郑茂余,王芳 . 有限热容不可逆四热源吸收式制冷机的优化
[J]. 吉林大学学报(工学版), 2008, 38(02): 283-0286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!