吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 480-485.doi: 10.13229/j.cnki.jdxbgxb20161184

• • 上一篇    下一篇

压电喷油器压电执行器热-电-机械耦合迟滞特性

孟育博1, 张幽彤2, 王志明1, 张晓晨2, 樊利康2, 李涛2   

  1. 1.山东大学 能源与动力学院,济南 250011;
    2.北京理工大学 机械与车辆学院,北京 100081
  • 收稿日期:2016-11-03 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 王志明(1959-),男,教授,博士生导师.研究方向:内燃机工作过程控制. E-mail:zhiming@sdu.edu.cn
  • 作者简介:孟育博(1986-),男,博士研究生.研究方向:柴油机喷油系统控制.E-mail:myb0201@126.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2012AA111708)

Couple hysteretic thermo-electro-mechanical performance of piezoelectric actuators for fuel injector

MENG Yu-bo1, ZHANG You-tong2, WANG Zhi-ming1, ZHANG Xiao-chen2, FAN Li-kang2, LI Tao2   

  1. 1.School of Energy and Power Engineering, Shandong University, Ji'nan 250011, China;
    2.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2016-11-03 Online:2018-03-01 Published:2018-03-01

摘要: 针对所开发的压电式共轨喷油器,采用压电执行器作为驱动元件,为了更好地对这类执行器的潜力进行开发,试验研究了压电执行器在准静态条件下的热-电-机械耦合特性。结果表明:在200~1200 N范围内,位移随着预紧力呈先增大后减小趋势;在25~80 ℃范围内,位移整体呈增大趋势,但随着温度升高,增长趋势逐渐变缓。一个包括压电堆迟滞特性和温度影响的数学模型被用来对试验结果进行模拟,仿真与试验结果具有良好的一致性。

关键词: 工程热物理, 压电执行器, 热-电-机械耦合, 迟滞特性, 数学模型

Abstract: To develop a piezoelectric common rail injection, the piezoelectric stack actuator was selected as the driving element. In order to exploit the potential of this kind actuation, the thermo-electro-mechanical behavior of the piezoelectric actuator was investigated by experiment, with maximum voltage of 150 V under different mechanical loads and different temperatures. Results show that, as the load increases from 200 N to 2000 N, the displacement increases first, and then decreases. In the temperature range of 25?C to 80 ?C, the displacement increase with the temperature, but this trend gradually slows down. A mathematical model based on the hysteresis and temperature effects is applied to simulate the experiment data, and the simulation results show reasonable agreement with the experiment results.

Key words: engineering thermophysics, piezoelectric actuators, thermo-electro-mechanical coupling, hysteretic performance, mathematical model

中图分类号: 

  • TK427
[1] Biggio M, Butcher M, Giustiniani A, et al.Memory characteristics of hysteresis and creep in multi-layer piezoelectric actuators:an experimental analysis [J].Physica B, 2014,435 (1):40-43.
[2] 卫海桥,裴自刚,冯登全,等.压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J].吉林大学学报:工学版,2016,42(1):1-8.
Wei Hai-qiao, Pei Zi-gang, Feng Deng-quan, et al. Effect of multi-injection with piezo injection on particulate emission in gasoline direct injection engine[J]. Journal of Jilin University(Engineering and Technology Edition),2016,42(1):1-8.
[3] 高长银.压电效应新技术及其应用[M].北京:电子工业出版社,2011.
[4] Webber K G, Franzbach D J, Koruza J, et al.Determination of the true operational range of a piezoelectric actuator[J].Am Ceram Soc,2014,97(9):2842-2849.
[5] Jiang W, Zhang R, Jiang B, et al.Characterization of piezoelectric materials with large piezoelectric and electromechanical coupling coefficients[J].Ultrasonics, 2003, 41(2):55-63.
[6] Senousy M S, Li F X, Mumford D, et al.Thermo-electro-mechanical performance of piezoelectric stack actuators for fuel injector applications [J].Journal of Intelligent Material Systems and Structures, 2009, 20(4): 387-399.
[7] Han Y M, Moo B K, Choi S B.Control performance investigation of piezoelectric actuators under variation of external heat environment [J].Trans Korean Soc Noise Vib Eng, 2015, 25(10):707-713.
[8] Butcher M, Davino D, Masi A, et al.An experimental evaluation of the fully coupled hysteretic electro-mechanical behavior of piezoelectric actuators[J].Physica B, 2016, 486: 116-120.
[9] Senousy M, Rajapakse R, Gadala M.Experimental investigation and theoretical modeling of piezoelectric actuators used in fuel injectors[J].IUTAM Bookseries, 2011, 24: 219-227.
[10] Koruza J, Franzbach D J, Schader F, et al.Enhancing the operational range of piezoelectric actuators by uniaxial compressive preloading [J].Applied Physics, 2015, 48(21):215-302.
[11] Dittmer R, Webber K G, Aulbach E, et al.Optimal working regime of lead-zirconate-titanate for actuation applications [J].Sensors and Actuators A Physical, 2013,189(2):187-194.
[12] Lin S I E.The theoretical and experimental studies of a circular multi-layered annular piezoelectric actuator[J].Sensors and Actuators A Physical, 2011, 165(2): 280-287.
[13] Quant M, Elizalde H, Flores A, et al.A comprehensive model for piezo ceramic actuators: modelling, validation and application [J].Smart Materials and Structures, 2009, 18(12):125011.
[14] Xu Q S, Li Y M.Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation [J].Journal of Dynamic Systems, Measurement and Control, 2010, 132(4):041011.
[15] Ossart F, Meunier G.Comparison between various hysteresis models and experimental data[J].Journal of Applied Physics, 1990, 67(9): 5379-5381.
[16] Grunbichler H, Kreith J, Bermejo R, et al.Influence of the load dependent material properties on the performance of multilayer piezoelectric actuators [J].Springer Netherlands,2011,24:243-253.
[17] Fukada E.History and recent progress in piezoelectric polymers[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequent Control, 2000, 47(6):1277-1290.
[18] Leonardo A, Andrea T.Piezoelectric injectors for automotive applications: modeling and experimental validation of hysteretic behavior and temperature effects [J].Journal of Dynamic Systems, Measurement and Control, 2013, 135(1): 011005.
[1] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[2] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[4] 吴志军, 赵文伯, 张青. 基于热氛围燃烧器的湍流射流起升火焰基础研究进展[J]. 吉林大学学报(工学版), 2016, 46(6): 1881-1891.
[5] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[6] 齐子姝, 高青, 刘研, 白莉. 地能利用热泵系统模型计算及其多年运行工况分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[7] 何荣, 郭睿, 管欣, 彭立恩. 钢板弹簧Fancher模型物理机理及参数辨识[J]. 吉林大学学报(工学版), 2013, 43(01): 12-16.
[8] 李静, 张建, 王梦春, 程超, 郭立书, 施正堂. 电子机械制动执行器数学建模与精细控制[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 1-6.
[9] 张阔, 谭庆昌, 王顺, 王聪慧, 边丽娟. 粗糙软接触润滑的摩擦因数[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 86-90.
[10] 齐子姝, 高青, 刘研, 于鸣. 联供模式地下换热器温变及其热泵效能分析[J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[11] 董周永, 任辉, 周亚军, 陈英. 黑木耳干燥特性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 349-353.
[12] 周亚军, 石晶, 胡士恒, 康建波, 苏丹, 马龙彪, 刘微. 含苹果颗粒果汁通电加热速度与优化模型[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 344-348.
[13] 管欣, 齐海政, 詹军. 基于SAE三连杆模型的钢板弹簧迟滞特性建模[J]. 吉林大学学报(工学版), 2010, 40(增刊): 76-0080.
[14] 周亚军,王淑杰,苏丹,吕晨艳,李宏谕,杨旭升. 固定酶催化合成十二烷基糖苷工艺试验与优化模型[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 358-0363.
[15] 韩建群, 郑萍. 永磁同步双转子/双定子电机转速的模糊控制[J]. 吉林大学学报(工学版), 2009, 39(05): 1252-1256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203 -1207 .
[2] 黄健康1, 何翠翠1, 2, 石玗1, 樊丁1. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] 徐涛, 刘光洁, 葛海潮, 张炜, 于征磊. 焊接热源局部坐标移动曲线路径建模方法[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] 骆海涛, 周维佳, 王洪光, 武加锋. 搅拌摩擦焊机器人典型工况下的受载分析[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] 初亮, 孙成伟, 郭建华, 赵迪, 李文惠. 基于轮缸压力的制动能量回收评价方法[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] 何祥坤, 季学武, 杨恺明, 武健, 刘亚辉. 基于集成式线控液压制动系统的轮胎滑移率控制[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] 袁朝春, 张龙飞, 陈龙, 何友国, 范兴根. 基于路面辨识的主动避撞系统制动性能[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .