吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 446-451.doi: 10.13229/j.cnki.jdxbgxb201702014

• • 上一篇    下一篇

失水干燥对路基压实黏质土抗剪强度特性的影响

刘寒冰1, 张互助1, 2, 王静2   

  1. 1.吉林大学 交通学院,长春 130022;
    2.吉林建筑大学 交通科学与工程学院,长春 130118
  • 收稿日期:2016-03-01 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 王静(1980-),女,副教授,博士.研究方向:道桥结构动态优化设计理论及应用.E-mail:wangjing0062@sina.com
  • 作者简介:刘寒冰(1957-),男,教授,博士生导师.研究方向:道桥结构动态优化设计理论及应用.E-mail:lhb@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51308256); 吉林省交通运输科技计划项目(2011-1-3).

Effect of dehydration on shear strength properties of compacted clayey soil

LIU Han-bing1, ZHANG Hu-zhu1, 2, WANG Jing2   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.School of Traffic Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • Received:2016-03-01 Online:2017-03-20 Published:2017-03-20

摘要: 为了客观可靠地评价干旱、半干旱地区路基压实土的工程性能,采用三轴压缩试验研究了某工程黏质土在不同干燥状态下的抗剪强度特性,分析了失水率对抗剪强度指标(黏聚力、内摩擦角)与抗剪强度的影响以及作用机理,建立了黏聚力、内摩擦角及抗剪强度与失水率的关系方程。结果表明:失水干燥可显著提高路基压实黏质土的抗剪强度及抗剪强度指标,黏聚力、内摩擦角和抗剪强度均随失水率的增加而递增,其中黏聚力、抗剪强度与失水率均呈指数函数关系,内摩擦角与失水率呈二次函数关系。失水干燥有利于提高路基的承载能力与稳定性,研究成果可为干旱、半干旱地区黏质土路基的设计与施工提供理论依据及技术参考。

关键词: 道路工程, 抗剪强度, 三轴压缩试验, 压实黏质土, 失水率, 黏聚力, 内摩擦角

Abstract: In order to access the performance of compacted soil of highway subgrade in arid and semiarid regions during the service period, the shear strength properties of engineering clayed soil at different dehydration levels were studied by triaxial compression test. The effect of the water loss rate on the shear strength parameters and on the shear strength was studied, and the effect mechanism was analyzed. Taking the water loss rate into consideration, the relationship equations of cohesion, internal friction angle and shear strength were established. Results show that the dehydration of the compacted clayed soil can remarkably improve its shear strength parameters and shear strength. The cohesion, internal friction angle and shear strength all increase with the water loss rate. The cohesion ad shear strength are exponential functions of the water loss rate, but the internal friction angle is a quadratic function of the water loss rate. Dehydration of compacted clayey soil can enhance the load bearing capacity and stability of highway subgrade. This study may provide theoretical and technical reference for the design and construction of clayey soil subgrade in arid and semiarid regions.

Key words: road engineering, shear strength, triaxial compression test, compacted clayey soil, water loss rate, cohesion, internal friction angle

中图分类号: 

  • U416
[1] 罗烈日,郑俊杰.不同模式下抗剪强度参数对路堤稳定性的影响[J].土木工程与管理学报,2012, 29(4):50-54.
Luo Lie-ri, Zheng Jun-jie. Effects of shear strength on embankment stability under different patterns[J]. Journal of Civil Engineering and Management, 2012, 29(4): 50-54.
[2] 梅岭,梅国雄,易宗发. K 0 ≠1时的地基临塑载荷和临界载荷近似计算公式[J].计算力学学报,2010, 27(6):1090-1095.
Mei Ling, Mei Guo-xiong, Yi Zong-fa. Approximate formulas of critical edge pressure and critical load of subsoil with K 0 ≠1[J]. Chinese Journal of Computational Mechanics, 2010, 27(6): 1090-1095.
[3] 赵吉坤,温娇娇.填土含水率对挡土墙土压力影响的实验分析[J].土木建筑与环境工程,2012(增刊2):155-160.
Zhao Ji-kun, Wen Jiao-jiao. Analysis of the effect of filling soil moisture content to the gravity retaining wall's performance[J]. Journal of Civil, Architectural & Environmental Engineering, 2012(Sup.2): 155-160.
[4] 刘寒冰,王静,魏海斌,等.冻融循环下路基土抗剪强度与塑性指数相关性[J].吉林大学学报:工学版,2011(增刊2):149-152.
Liu Han-bing, Wang Jing, Wei Hai-bin, et al. Correlation of subgrade soil shear strength and plasticity index under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2011(Sup.2): 149-152.
[5] 胡梦玲,姚海林,刘杰,等.干密度对路基性能的影响研究[J].岩土力学,2012, 33(增刊2):91-97.
Hu Meng-ling, Yao Hai-lin, Liu Jie, et al. Research on influence of dry density on subgrade performance[J]. Rock and Soil Mechanics, 2012, 33(Sup.2): 91-97.
[6] 贾亮,朱彦鹏,朱鋆川,等.兰州马兰、离石压实黄土抗剪强度影响因素探讨[J].岩土工程学报,2014(增刊2):120-124.
Jia Liang, Zhu Yan-peng, Zhu Yun-chuan, et al. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014(Sup.2): 120-124.
[7] 骆以道.考虑饱和度的压实填土抗剪强度研究[J].岩土力学,2011, 32(10):3143-3147.
Luo Yi-dao. Research on shear strength of compacted soils considering saturation degree[J]. Rock and Soil Mechanics, 2011, 32(10): 3143-3147.
[8] 袁俊平,詹斌,陈胜超,等.含水率和压实度对路基填土力学特性的影响[J].水利与建筑工程学报,2013, 11(2):98-102.
Yuan Jun-ping, Zhan Bin, Chen Sheng-chao, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(2): 98-102.
[9] 王来贵,张鹏,李喜林.含水率及压实度对排土场岩土抗剪强度的影响[J].辽宁工程技术大学学报:自然科学版,2015(6):699-703.
Wang Lai-gui, Zhang Peng, Li Xi-lin. Water content and compactness influence on waste disposal site rock shearing strength[J]. Journal of Liaoning Technical University(Natural Science), 2015(6): 699-703.
[10] 王娟娟,张秀丽,王铁行.考虑含水量和密度影响的压实黄土抗剪强度特性研究[J].西安建筑科技大学学报:自然科学版,2014, 46(5):687-691.
Wang Juan-juan, Zhang Xiu-li, Wang Tie-hang. The shear strength research of compacted loess considering the impact of moisture content and dry density[J]. Journal of Xi'an University of Architecture & Technology(Natural Science), 2014, 46(5): 687-691.
[11] 南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
[12] 殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.
[13] 袁聚云, 钱建固,张宏鸣,等. 土质学与土力学[M]. 北京: 人民交通出版社, 2009.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[7] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] 王智远, 李国栋, 王勇华. 基于AHP-TOPSIS的桥梁设计方案优选决策模型[J]. 吉林大学学报(工学版), 2017, 47(2): 478-482.
[15] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!