吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 837-843.doi: 10.13229/j.cnki.jdxbgxb201703020

• • 上一篇    下一篇

介观尺度下磨料浓度对磨粒流加工质量的影响

李俊烨1, 2, 乔泽民1, 杨兆军2, 张心明1   

  1. 1.长春理工大学 机电工程学院,长春 130022;
    2.吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2016-04-21 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 张心明(1967-),男,研究员,博士生导师.研究方向:精密超精密加工,检测及装备.E-mail:zxm@cust.edu.cn
  • 作者简介:李俊烨(1981-),男,副教授,博士.研究方向:精密与超精密加工,微摩擦与多相流技术.E-mail:ljy@cust.edu.cn
  • 基金资助:
    国家自然科学基金项目(51206011); 吉林省科技发展计划项目(20160101270JC,20170204064GX); 吉林省教育厅项目(吉教科合字[2016]第386号)

Influence of abrasive concentration on processing quality of abrasive flow in mesoscopic scale

LI Jun-ye1, 2, QIAO Ze-min1, YANG Zhao-jun2, ZHANG Xin-ming1   

  1. 1.College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun 130022,China;
    2.College of Mechanical Science and Engineering, Jilin Universty, Changchun 130022, China
  • Received:2016-04-21 Online:2017-05-20 Published:2017-05-20

摘要: 选择介观尺度下的粒子作为研究对象,通过设定介观尺度下的磨粒和工件磨削参数,进行了不同磨料浓度对磨粒流加工质量影响的仿真分析和试验研究。从数值模拟和试验研究结果可知:随着磨料浓度的增大,动压力和湍流动能升高,磨削效果增强;试验后的工件经过变焦非接触三维形貌测量和扫描电镜测试也得到了相同的结论,即随着磨料浓度的增大,经过固液两相磨粒流加工后的工件表面粗糙度逐渐降低,小孔质量和工件的使用性能得到提升,工件表面质量提高。

关键词: 机械制造工艺与装备, 介观尺度, 磨料浓度, 仿真分析

Abstract: Simulation analysis and experiments are performed to investigate the influence of the concentration of abrasive particles on the processing quality of abrasive flow in mesoscopic scale. Both analysis and experimental results show that with the increase in abrasive concentration, the dynamic pressure and turbulent kinetic energy increase, and the grinding effect is enhanced. The shapes of grinded workpieces are measured by zoom non-contact 3D measurement and scanned by SEM, and the results are similar to that of simulation. In other words, with the increase in abrasive concentration, the workpiece roughness decreases, the hole quality and workpiece performance are improved, the workpiece surface quality is enhanced.

Key words: machinery manufacturing technology and equipment, mesoscopic scale, abrasive concentration, simulation analysis

中图分类号: 

  • TH161.1
[1] 李俊烨,许颖,杨立峰, 等. 非直线管零件的磨粒流加工实验研究[J].中国机械工程, 2014,25(13):1729-1734.
Li Jun-ye,Xu Ying,Yang Li-feng,et al.Research on abrasive flow machining experiments of non-linear tubes[J].China Mechanical Engineering,2014,25(13):1729-1734.
[2] Li Jun-ye, Liu Wei-na, Yang Li-feng, et al. Study of abrasive flow machining parameter optimization based on taguchi method[J]. Journal of Computational and Theoretical Nanoscience,2013,10(12):2949-2954.
[3] 沈志煌,姚斌,陆如升,等. 精密螺杆转子齿廓成形磨削的误差分析[J]. 吉林大学学报:工学版,2016,46(3):831-838.
profile[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(3):831-838.
[4] 丁金福,刘润之,张克华,等. 磨粒流精密光整加工的微切削机理[J]. 光学精密工程,2014,22(12):3324-3331.
Ding Jin-fu, Liu Run-zhi, Zhang Ke-hua, et al. Micro cutting mechanism of abrasive flow precision machining[J]. Optics and Precision Engineering,2014, 22(12):3324-3331.
[5] Venkatesh G, Sharma A K, Singh N. Simulation of media behaviour in vibration assisted abrasive flow machining[J]. Simulation Modelling Practice and Theory,2015,51:1-13.
[6] Wan S, Ang Y J, Sato T, et al. Process modeling and CFD simulation of two-way abrasive flow machining[J]. The International Journal of Advanced Manufacturing Technology,2014,71(5):1077-1086.
[7] Abu-Nada E. Assessment of dissipative particle dynamics to simulate combined convection heat transfer: effect of compressibility[J]. International Communications in Heat and Mass Transfer,2015,61:49-60.
[8] 朱明哲. 纳米尺度接触和摩擦的分子动力学及多尺度模拟研究[D]. 北京:清华大学机械工程学院,2010.
Zhu Ming-zhe. Molecular dynamics and multiscale simulation of contact and friction on the nanoscale[D]. Beijing: School of Mechanical Engineering,Tsinghua University,2010.
[9] 陈硕,赵钧,范西俊,等. 复杂流体流动的耗散粒子动力学研究进展[J]. 科技通报,2006,22(5):596-602.
Chen Shuo, Zhao Jun, Fan Xi-jun, et al. Research advances in the study of complex fluid flows by dissipative particle dynamics[J]. Bulletin of Science and Technology,2006,22(5):596-602.
[10] Larentzos J P, Brennan J K, Moore J D, et al. Parallel implementation of isothermal and isoenergetic dissipative particle dynamics using shardlow-like splitting algorithms[J]. Computer Physics Communications,2014,185(7):1987-1998.
[11] Goicochea A G, Altamirano M A B, Hernández J D, et al. The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics[DB/OL].[2016-03-19].https:∥arxiv.org/ftp/arxiv/papers/1411/1411.1798.pdf.
[1] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[2] 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[3] 姚亮, 初亮, 周飞鲲, 刘明辉, 张永生, 魏文若. 纯电动轿车制动能量回收节能潜力仿真分析[J]. 吉林大学学报(工学版), 2013, 43(01): 6-11.
[4] 王登峰, 季枫, 陈书明, 苏丽俐, 郝赫. 多轴重型汽车气动制动防抱死系统性能仿真与试验[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 7-12.
[5] 陈晋市, 元万荣, 袁华山, 刘昕晖, 王展. 基于AMESim的滑移装载机自动调平系统[J]. , 2012, (06): 1390-1395.
[6] 陈立军, 孙博, 薛宏, 刁建超. 燃烧控制系统H鲁棒控制器设计 [J]. , 2012, (03): 726-731.
[7] 杨钫, 王庆年, 卢京民, 郑益宏. 混合动力商用车仿真模型与实车试验对比[J]. 吉林大学学报(工学版), 2010, 40(增刊): 35-0038.
[8] 王庆年,王军年,靳立强,胡长健,张向忠 . 用于电动轮驱动汽车的差动助力转向[J]. 吉林大学学报(工学版), 2009, 39(01): 1-6.
[9] 王云成,王建华,谢飞,张宝生 . 电控限滑差速器对汽车动力性的影响[J]. 吉林大学学报(工学版), 2008, 38(增刊): 18-0022.
[10] 孙中辉,李幼德,孙中红,郭彦颖 . 改进的车辆平顺性模型[J]. 吉林大学学报(工学版), 2008, 38(03): 497-0503.
[11] 李成;郑艳萍;铁瑛 . 纤维排列方向对含圆孔的各向异性板应力场影响的仿真分析[J]. 吉林大学学报(工学版), 2008, 38(03): 544-0547.
[12] 李晓英,于秀敏,李 君,吴志新. 串联混合动力汽车控制策略[J]. 吉林大学学报(工学版), 2005, 35(02): 122-0126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!