吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 827-836.doi: 10.13229/j.cnki.jdxbgxb201703019

• • 上一篇    下一篇

全地形铰接式履带车辆俯仰运动性能

董超, 成凯, 胡康乐, 胡文强   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 成凯(1962-),男,教授,博士生导师.研究方向:工程车辆运动学与动力学.E-mail:kaicheng62@163.com
  • 作者简介:董超(1988-),男,博士研究生.研究方向:工程车辆运动学与动力学.E-mail:miqidongchao@163.com
  • 基金资助:
    国家自然科学基金项目(51375202); 国家科技计划和重大专项基金项目(2009DFR80010)

Pitching movement performance of all terrain articulated tracked vehicles

DONG Chao, CHENG Kai, HU Kang-le, HU Wen-qiang   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Online:2017-05-20 Published:2017-05-20

摘要: 为了准确求解全地形铰接式履带车辆俯仰运动过程中的运动学和力学相关参数,在深入研究全地形铰接式履带车辆俯仰运动机理的基础上,采用数学建模的方法建立了全地形铰接式履带车辆俯仰运动过程中的运动学和力学模型,理论上推导出用于求解前后车体最大俯仰角度、俯仰高度、重心运动轨迹半径以及车辆顺利完成俯仰运动时铰接机构所需要提供的最小拉力等的理论计算公式,并以某一具体铰接式履带车辆为例进行了数值求解。最后,采用虚拟样机技术对所建立的理论模型进行了验证,结果表明:理论计算值与虚拟样机仿真得到的结果较为接近,其相对误差均没有超过15%,满足工程实践的要求,进而验证了理论模型的正确性。该研究成果可为全地形铰接式履带车辆的结构设计和优化以及俯仰液压缸的选型等问题提供理论依据。

关键词: 机械工程, 全地形铰接式履带车辆, 俯仰运动, 运动学模型, 力学模型, 虚拟样机技术

Abstract: To accurately solve the kinematic and mechanical parameters of the all terrain articulated tracked vehicle in the process of pitching movement, mathematical modeling method is adopted to establish the kinematic and mechanical models of the vehicle in pitching movement. The theoretical formulas of the maximum pitching angles, the maximum pitching heights, the motion trail radii of the centers of gravity of the front and rear vehicles, and the maximum pulling force of the articulated units are derived. Then, taking a specific articulated tracked vehicle as an example, the formulas are numerically solved. Finally, a virtual prototype of the articulated tracked vehicle is adopted to verify the theoretical models. It is shown that the theoretical and simulation results are in good agreement, the relative errors between the theoretical and simulation results do not exceed 15%. This error range meets the requirements of engineering practice. The results of this research work can provide a theoretical basis for designing and optimizing the structure of all terrain articulated tracked vehicles, and selecting the type of the pitching hydraulic cylinders.

Key words: machanical engineering, all terrain articulated tracked vehicles, pitching movement, kinematic model, mechanical model, virtual prototype technology

中图分类号: 

  • TH113
[1] Janarthanan B, Padmanabhan C, Sujatha C. Longitudinal dynamics of a tracked vehicle: simulation and experiment[J]. Journal of Terramechanics,2012,49(2):63-72.
[2] 郑鑫,姚寿文. 全地形履带车橡胶扭力轴套扭转刚度特性研究[J].汽车工程学报,2013,3(2):125-132.
Zheng Xin,Yao Shou-wen. Research on torsional stiffness of rubber torsion bushing for all-terrain tracked vechicle[J]. Chinese Journal of Automotive Engineering,2013,3(2):125-132.
[3] Watanabe K, Kitano M. Study on steerability of articulated tracked vehicles,part1:theoretical and experimental analysis[J]. Journal of Terramechanics,1986,23(2):69-83.
[4] Edlund J, Keramati E, Servin M. A long-tracked bogie design for forestry machines on soft and rough terrain[J]. Journal of Terramechanics,2013,50(2):73-83.
[5] Fijalkowski B T. Novel mobility and steerability enhancing concept of all-electric intelligent articulated tracked vehicles[C]∥2003 IEEE Intelligent Vehicles Symposium,Columbus,USA,2003:225-230.
[6] Yao Zong-wei,Wang Guo-qiang,Guo Rui,et al. Theory and experimental research on six-track steering vehicles[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2013,51(2):218-235.
[7] 魏小强,成凯,林源. 某型履带式运输车扭杆悬挂装置力学性能分析与优化[J]. 汽车工程,2012,34(1):67-71.
Wei Xiao-qiang,Cheng Kai,Lin Yuan. Mechanical performance analysis and optimization of the torsion bar suspension system in an articulated tracked carrier[J]. Automotive Engineering,2012,34(1):67-71.
[8] 成凯,魏小强,李贵助. 铰接履带式运输车转向俯仰装置强度刚度分析[J]. 长安大学学报:自然科学版,2013,33(2):95-100.
Cheng Kai, Wei Xiao-qiang, Li Gui-zhu. Strength and stiffness analysis of articulated steeringand pitching device on the all-terrain articulated tracked carrier[J]. Journal of Chang'an University(Natural Science Edition),2013,33(2):95-100.
[9] 陈波. 钴结壳采矿车行走路径控制研究[D]. 长沙:中南大学机电工程学院,2012.
Chen Bo. Research on tracking predetermined path for the cobalt crust mining vehicle[D]. Changsha: College of Mechanical and Electrical Engineering,Central South University,2012.
[10] 张敏. 基于模糊神经网络的海底采矿车路径跟踪行走控制研究[D]. 长沙:中南大学机电工程学院,2010.
Zhang Min.The walking path following control of the seabed mining vehicle research based on the fuzzy neural network[D]. Changsha: College of Mechanical and Electrical Engineering,Central South University,2010.
[11] 杨一岱,荆武兴,刘玥. 挠性航天器浮动质心动力学建模[J].哈尔滨工业大学学报,2015,47(5):7-12.
Yang Yi-dai,Jing Wu-xing,Liu Yue. Dynamic modeling of flexible spacecraft based on floating centroid system[J]. Journal of Harbin Institute of Technology,2015,47(5):7-12.
[12] 王志强,姜洪源,Roman Kamnik. 康复机器人辅助站立人体质心动量测试及模拟[J]. 吉林大学学报:工学版,2015,45(3):844-850.
Wang Zhi-qiang,Jiang Hong-yuan, Roman Kamnik. Experiment and simulation on body center-of-mass momentum during sit-to-stand assistedby rehabilitation robot[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(3):844-850.
[13] Omar M A. Chain drive simulation using spatial multibody dynamics[J]. Advances in Mechanical Engineering,2014,6:378030.
[14] Cheng Y B, Yin S B, Wang X P, et al. Design and analysis of double-side meshing and dual-phase driving timing silent chain system[J]. Journal of Mechanical Engineering,2016,62(2):127-136.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762-1769.
[3] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[4] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[5] 臧鹏飞, 王哲, 孙晨乐, 林炼炼. 直线增程器稳态运行换气过程[J]. 吉林大学学报(工学版), 2018, 48(5): 1455-1465.
[6] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[7] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[8] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[9] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[10] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[11] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[12] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[13] 许秀军, 李震, 王立权, 张同喜. 海流边界下初始铺管作业建模及半物理仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 803-811.
[14] 李因武, 吴庆文, 常志勇, 杨成. 基于仿生斗齿的反铲液压挖掘机动臂仿真优化设计[J]. 吉林大学学报(工学版), 2018, 48(3): 821-827.
[15] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[2] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486 -491 .
[3] 李明达, 隗海林, 门玉琢, 包翠竹. 复杂底部结构下的重型载货汽车气动阻力[J]. 吉林大学学报(工学版), 2017, 47(3): 731 -736 .
[4] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804 -810 .