吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 855-860.doi: 10.13229/j.cnki.jdxbgxb201703023

• • 上一篇    下一篇

高定位精度转台检测系统调整误差补偿

鄢永耀1, 2, 刘伟1, 付锦江1, 2   

  1. 1.中国科学院 长春光学精密机械与物理研究所,长春130033;
    2.中国科学院大学,北京100039
  • 收稿日期:2016-01-06 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:鄢永耀(1988-),男,博士研究生.研究方向:光学精密机械结构设计及优化分析.E-mail:512190699@qq.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2011AA12A103); 中国地质调查局工作项目(1212011120227)

Compensation for adjustment error in high positioning accuracy turntable measuring system

YAN Yong-yao1, 2, LIU Wei1, FU Jin-jiang1, 2   

  1. 1.Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Science, Changchun 130033, China;
    2. University of Chinese Academy of Science, Beijing 100039,China
  • Received:2016-01-06 Online:2017-05-20 Published:2017-05-20

摘要: 某用于实验室激光通信实验的转台要求具有±1.5″的定位精度,为了对该高定位精度转台实施检测,搭建了由24面棱体、定心装置、0.2″二维光电自准直仪和支架组成的高精度测角系统,对该测角系统进行了准直误差理论分析。结果表明:多面棱体偏心对定位精度的测量结果影响很小,一般可以忽略,但自准直仪的调整误差对高定位精度的测量影响很大。为了消除该系统误差,在理论分析的基础上,提出了一种基于角度标定的调整误差补偿的方法并进行了实验验证。通过精细调整减小调整误差方法测得转台定位精度σ为0.936″,而采用新补偿调整误差方法测得定位精度σ″为0.922, σ″相对σ的相对误差为-1.496%,且满足转台定位精度要求。实验结果证明了本文方法的快速性和可靠性。

关键词: 工程测量技术, 定位精度, 误差补偿, 自准直仪, 准直误差

Abstract: A turntable to be used in laser communication laboratory experiments needs positioning accuracy of ±1.5″. In order to check the technical requirements, a high accuracy angle measurement system, composed of regular polygon error, centering device, 0.2″ two-dimensional optoelectronic autocollimation and supporting, was set up. The collimation error of the system was theoretically analyzed, which shows that the off-center between the regular polygon mirror and the turntable contributes little impact on the positioning accuracy of the measurement results, which generally can be ignored. However, the adjustment error of the autocollimation has great influence on the measurement system. In order to eliminate the system error, on the basis of theoretical analysis, a new method based on data processing to compensate the adjustment error was proposed and verified by contrast experiments. Results show that a positioning accuracy σ=0.936″, was obtained by timing experiential fine adjustment, while the positioning accuracy σ″ = 0.922″ was obtained by the proposed new method. The relative error between σ″ and σ is -1.496%, which satisfies the technical requirement. Contrast experiments also demonstrate that the proposed method is convenient and reliable.

Key words: engineering survey technology, positioning accuracy, error compensation, autocollimator, collimation error

中图分类号: 

  • TH741
[1] 赵馨,宋延嵩,佟首峰,等. 空间激光通信捕获、对准、跟踪系统动态演示实验[J]. 中国激光,2014,41(3):0305005.
Zhao Xin,Song Yan-song,Tong Shou-feng, et al. Dynamic demonstration experiment of acquisition, pointing and tracking system in space laser communications[J]. Chinese Journal of Lasers,2014,41(3):0305005.
[2] 郑燕红. 卫星激光通信终端系统捕获瞄准跟踪技术研究[D]. 哈尔滨:哈尔滨工业大学航天学院,2012.
Zheng Yan-hong. Research on acquisition pointing and tracking of satellite laser communication terminal[D]. Harbin:School of Astronautics, Harbin Institute of Technology,2012.
[3] Mohan S, Alvarez-Salazar O, Birnbaum K,et al. Pointing, acquisition, and tracking architecture tools for deep-space optical communications[C]∥SPIE, San Francisco, California, USA,2014:89710H.
[4] 姜会林,佟首峰. 空间激光通信技术与系统[M]. 北京:国防工业出版社,2010.
[5] Toyoshima M. Optical space communication in Japan[J]. Function Materials,2003,10(3):428-437.
[6] Tolker-Nielsen T, Oppenhaeuser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4,SILEX[C]∥SPIE, San Francisco, California, USA, 2002:1-15.
[7] Lesh J R. Deep space optical communications development program[C]∥Optical Technologies for Space Communication Systems, Los Angeles, CA,USA,1987:8-11.
[8] 王绍举,金光,徐开. 高精度激光通信小卫星星座仿真平台设计[J]. 光学精密工程,2008,16(8):1554-1559.
Wang Shao-ju,Jin Guang,Xu Kai. Design of simulation platform for high precision laser communication small satellite constellation[J]. Optics and Precision Engineer,2008,16(8):1554-1559.
[9] 郭敬滨,曹红艳,王克新,等. 转台分度误差检测及补偿技术的研究[J]. 中国机械工程,2014,25(7):895-899.
Guo Jing-bin,Cao Hong-yan,Wang Ke-xin, et al. Study on verification and compensation of indexing errors for turntable[J]. China Mechanical Engineering,2014,25(7):895-899.
[10] 吴世臣. 卫星光通信终端二维转台轴系误差分析及补偿方法研究[D]. 哈尔滨:哈尔滨工业大学航天学院,2007.
Wu Shi-chen. Analyse of axis-errors and compensating in terminal of intersatellite optical communication[D]. Harbin:School of Astronautics,Harbin Institute of Technology,2007.
[11] 曹学东,范天泉,吴时彬,等. 几何量测量技术进展[J]. 红外与激光工程,2008,37(5):884-889.
Cao Xue-dong,Fan Tian-quan,Wu Shi-bin, et al. Current developments of measurement techniques for geometry parameters[J]. Infrared and Laser Engineering,2008,37(5):884-889.
[12] 苏燕芹,张景旭,陈宝刚,等. 谐波分析方法在提高精密转台回转精度中的应用[J]. 红外与激光工程,2014,43(1):274-278.
Su Yan-qin,Zhang Jing-xu,Chen Bao-gang,et al. Harmonic analysis application in accuracy improvement of precise turntable[J].Infrared and Laser Engineering,2014,43(1):274-278.
[13] 张东纯,蒋亚红. 多面棱体工作面偏差补偿的符号问题[J]. 测控技术,2008,27(3):94-95.
Zhang Dong-chun,Jiang Ya-hong. Error compensation of reflecting plane of polygons[J]. Measurement & Control Technology,2008,27(3):94-95.
[14] 孙方金. 自准直仪与反光面准直时的注意事项[J]. 计量技术,1999(10):33-36.
Sun Fang-jin. The collimation announcements between the reflective surface and the autocollimator[J]. Measurement Technique,1999(10):33-36.
[1] 王凤艳, 黄润秋, 陈剑平, 杨国东, 牛雪峰, 韩东亮, 马丽霞. 基于免棱镜全站仪的岩体边坡控制测量及结构面产状检验测量[J]. 吉林大学学报(工学版), 2013, 43(06): 1607-1614.
[2] 李瑞雪, 房至一, 仪婷婷. 基于可规律性移动锚节点和接收信号强度指示器的改进DV-Hop定位算法及其性能分析[J]. 吉林大学学报(工学版), 2011, 41(02): 435-0441.
[3] 张立斌, 苏建, 单洪颖, 田永军, 刘苏超. 轮胎印迹压电式汽车轴距差检测误差补偿方法[J]. 吉林大学学报(工学版), 2011, 41(02): 327-0332.
[4] 刘衍珩, 刘炳日, 孙大洋, 王爱民. WSN中一种DV-Hop定位精度改进算法[J]. 吉林大学学报(工学版), 2010, 40(03): 763-0768.
[5] 秦勇,赵杰,王晓宇 . 基于椭圆拟合误差补偿算法的数字磁罗盘
[J]. 吉林大学学报(工学版), 2009, 39(02): 489-0493.
[6] 丛玉良, 姜桂艳, 王勋龙 . 双层圆环缝隙单元准直误差对频率选择特性的影响[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 119-121.
[7] 李欣欣, 卢全国, 杨志刚, 程光明, 曾平. 蠕动式精密直线驱动器[J]. 吉林大学学报(工学版), 2003, (2): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!